Spaces:
Build error
Build error
thvl_textrecog_data_root = 'data/recog/synTH' | |
thvl_textrecog_train = dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_train.json', | |
pipeline=None) | |
thvl_textrecog_test = dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_test.json', | |
test_mode=True, | |
pipeline=None) | |
default_scope = 'mmocr' | |
env_cfg = dict( | |
cudnn_benchmark=True, | |
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | |
dist_cfg=dict(backend='nccl')) | |
randomness = dict(seed=None) | |
default_hooks = dict( | |
timer=dict(type='IterTimerHook'), | |
logger=dict(type='LoggerHook', interval=100), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
sync_buffer=dict(type='SyncBuffersHook'), | |
visualization=dict( | |
type='VisualizationHook', | |
interval=1, | |
enable=False, | |
show=False, | |
draw_gt=False, | |
draw_pred=False)) | |
log_level = 'INFO' | |
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True) | |
load_from = None | |
resume = False | |
val_evaluator = dict( | |
type='MultiDatasetsEvaluator', | |
metrics=[ | |
dict( | |
type='WordMetric', | |
mode=['exact', 'ignore_case', 'ignore_case_symbol']), | |
dict(type='CharMetric') | |
], | |
dataset_prefixes=None) | |
test_evaluator = dict( | |
type='MultiDatasetsEvaluator', | |
metrics=[ | |
dict( | |
type='WordMetric', | |
mode=['exact', 'ignore_case', 'ignore_case_symbol']), | |
dict(type='CharMetric') | |
], | |
dataset_prefixes=None) | |
vis_backends = [dict(type='LocalVisBackend')] | |
visualizer = dict( | |
type='TextRecogLocalVisualizer', | |
name='visualizer', | |
vis_backends=[dict(type='LocalVisBackend')]) | |
optim_wrapper = dict( | |
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.0003)) | |
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=50, val_interval=1) | |
val_cfg = dict(type='ValLoop') | |
test_cfg = dict(type='TestLoop') | |
param_scheduler = [dict(type='MultiStepLR', milestones=[3, 4], end=6)] | |
file_client_args = dict(backend='disk') | |
dictionary = dict( | |
type='Dictionary', | |
dict_file= | |
'th_dict.txt', | |
with_padding=True, | |
with_unknown=True, | |
same_start_end=True, | |
with_start=True, | |
with_end=True) | |
model = dict( | |
type='NRTR', | |
backbone=dict(type='NRTRModalityTransform'), | |
encoder=dict(type='NRTREncoder', n_layers=12), | |
decoder=dict( | |
type='NRTRDecoder', | |
module_loss=dict( | |
type='CEModuleLoss', ignore_first_char=True, flatten=True), | |
postprocessor=dict(type='AttentionPostprocessor'), | |
dictionary=dict( | |
type='Dictionary', | |
dict_file= | |
'th_dict.txt', | |
with_padding=True, | |
with_unknown=True, | |
same_start_end=True, | |
with_start=True, | |
with_end=True), | |
max_seq_len=30), | |
data_preprocessor=dict( | |
type='TextRecogDataPreprocessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375])) | |
train_pipeline = [ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
ignore_empty=True, | |
min_size=2), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=4), | |
dict(type='PadToWidth', width=160), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=16), | |
dict(type='PadToWidth', width=160), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
] | |
train_list = [ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_train.json', | |
pipeline=None) | |
] | |
test_list = [ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_test.json', | |
test_mode=True, | |
pipeline=None) | |
] | |
train_dataset = dict( | |
type='ConcatDataset', | |
datasets=[ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_train.json', | |
pipeline=None) | |
], | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
ignore_empty=True, | |
min_size=2), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=4), | |
dict(type='PadToWidth', width=160), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
]) | |
test_dataset = dict( | |
type='ConcatDataset', | |
datasets=[ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_test.json', | |
test_mode=True, | |
pipeline=None) | |
], | |
pipeline=[ | |
dict(type='LoadImageFromFile', file_client_args=dict(backend='disk')), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=16), | |
dict(type='PadToWidth', width=160), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
]) | |
train_dataloader = dict( | |
batch_size=384, | |
num_workers=24, | |
persistent_workers=True, | |
sampler=dict(type='DefaultSampler', shuffle=True), | |
dataset=dict( | |
type='ConcatDataset', | |
datasets=[ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_train.json', | |
pipeline=None) | |
], | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk'), | |
ignore_empty=True, | |
min_size=2), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=4), | |
dict(type='PadToWidth', width=160), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio')) | |
])) | |
test_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='ConcatDataset', | |
datasets=[ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_test.json', | |
test_mode=True, | |
pipeline=None) | |
], | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk')), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=16), | |
dict(type='PadToWidth', width=160), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio')) | |
])) | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=4, | |
persistent_workers=True, | |
drop_last=False, | |
sampler=dict(type='DefaultSampler', shuffle=False), | |
dataset=dict( | |
type='ConcatDataset', | |
datasets=[ | |
dict( | |
type='OCRDataset', | |
data_root='data/recog/synTH', | |
ann_file='textrecog_test.json', | |
test_mode=True, | |
pipeline=None) | |
], | |
pipeline=[ | |
dict( | |
type='LoadImageFromFile', | |
file_client_args=dict(backend='disk')), | |
dict( | |
type='RescaleToHeight', | |
height=32, | |
min_width=32, | |
max_width=160, | |
width_divisor=16), | |
dict(type='PadToWidth', width=160), | |
dict(type='LoadOCRAnnotations', with_text=True), | |
dict( | |
type='PackTextRecogInputs', | |
meta_keys=('img_path', 'ori_shape', 'img_shape', | |
'valid_ratio')) | |
])) | |
auto_scale_lr = dict(base_batch_size=384) | |
launcher = 'none' | |
work_dir = './work_dirs/nrtr_modality-transform_50e_thvl' | |