Spaces:
Build error
Build error
napatswift
commited on
Commit
·
cc0b98f
1
Parent(s):
f25f280
Update model
Browse files- model/det/config.py +133 -19
- model/det/model.pth +2 -2
model/det/config.py
CHANGED
@@ -42,9 +42,20 @@ train_pipeline = [
|
|
42 |
dict(
|
43 |
type='ImgAugWrapper',
|
44 |
args=[['Fliplr', 0.5], {
|
|
|
|
|
|
|
|
|
45 |
'cls': 'Affine',
|
46 |
'rotate': [-10, 10]
|
47 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
49 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
50 |
dict(type='Pad', size=(640, 640)),
|
@@ -67,10 +78,10 @@ test_pipeline = [
|
|
67 |
type='PackTextDetInputs',
|
68 |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
69 |
]
|
70 |
-
|
71 |
-
|
72 |
type='OCRDataset',
|
73 |
-
data_root='data/det/textdet
|
74 |
ann_file='textdet_train.json',
|
75 |
data_prefix=dict(img_path='imgs/'),
|
76 |
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
@@ -92,9 +103,20 @@ icdar2015_textdet_train = dict(
|
|
92 |
dict(
|
93 |
type='ImgAugWrapper',
|
94 |
args=[['Fliplr', 0.5], {
|
|
|
|
|
|
|
|
|
95 |
'cls': 'Affine',
|
96 |
'rotate': [-10, 10]
|
97 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
99 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
100 |
dict(type='Pad', size=(640, 640)),
|
@@ -102,7 +124,22 @@ icdar2015_textdet_train = dict(
|
|
102 |
type='PackTextDetInputs',
|
103 |
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
104 |
])
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
type='OCRDataset',
|
107 |
data_root='data/det/textdet-thvote',
|
108 |
ann_file='textdet_test.json',
|
@@ -133,7 +170,7 @@ default_hooks = dict(
|
|
133 |
timer=dict(type='IterTimerHook'),
|
134 |
logger=dict(type='LoggerHook', interval=5),
|
135 |
param_scheduler=dict(type='ParamSchedulerHook'),
|
136 |
-
checkpoint=dict(type='CheckpointHook', interval=
|
137 |
sampler_seed=dict(type='DistSamplerSeedHook'),
|
138 |
sync_buffer=dict(type='SyncBuffersHook'),
|
139 |
visualization=dict(
|
@@ -146,7 +183,7 @@ default_hooks = dict(
|
|
146 |
log_level = 'INFO'
|
147 |
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
|
148 |
load_from = None
|
149 |
-
resume =
|
150 |
val_evaluator = dict(type='HmeanIOUMetric')
|
151 |
test_evaluator = dict(type='HmeanIOUMetric')
|
152 |
vis_backends = [dict(type='LocalVisBackend')]
|
@@ -154,21 +191,87 @@ visualizer = dict(
|
|
154 |
type='TextDetLocalVisualizer',
|
155 |
name='visualizer',
|
156 |
vis_backends=[dict(type='LocalVisBackend')])
|
|
|
157 |
optim_wrapper = dict(
|
158 |
-
type='OptimWrapper',
|
159 |
-
|
160 |
-
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
|
161 |
val_cfg = dict(type='ValLoop')
|
162 |
test_cfg = dict(type='TestLoop')
|
163 |
-
param_scheduler = [dict(type='PolyLR', power=0.9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
train_dataloader = dict(
|
165 |
-
batch_size=
|
166 |
num_workers=8,
|
167 |
persistent_workers=True,
|
168 |
sampler=dict(type='DefaultSampler', shuffle=True),
|
169 |
dataset=dict(
|
170 |
type='OCRDataset',
|
171 |
-
data_root='data/det/textdet
|
172 |
ann_file='textdet_train.json',
|
173 |
data_prefix=dict(img_path='imgs/'),
|
174 |
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
@@ -190,9 +293,20 @@ train_dataloader = dict(
|
|
190 |
dict(
|
191 |
type='ImgAugWrapper',
|
192 |
args=[['Fliplr', 0.5], {
|
|
|
|
|
|
|
|
|
193 |
'cls': 'Affine',
|
194 |
'rotate': [-10, 10]
|
195 |
-
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
197 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
198 |
dict(type='Pad', size=(640, 640)),
|
@@ -201,7 +315,7 @@ train_dataloader = dict(
|
|
201 |
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
202 |
]))
|
203 |
val_dataloader = dict(
|
204 |
-
batch_size=
|
205 |
num_workers=4,
|
206 |
persistent_workers=True,
|
207 |
sampler=dict(type='DefaultSampler', shuffle=False),
|
@@ -228,7 +342,7 @@ val_dataloader = dict(
|
|
228 |
'scale_factor'))
|
229 |
]))
|
230 |
test_dataloader = dict(
|
231 |
-
batch_size=
|
232 |
num_workers=4,
|
233 |
persistent_workers=True,
|
234 |
sampler=dict(type='DefaultSampler', shuffle=False),
|
@@ -254,6 +368,6 @@ test_dataloader = dict(
|
|
254 |
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
255 |
'scale_factor'))
|
256 |
]))
|
257 |
-
auto_scale_lr = dict(base_batch_size=
|
258 |
launcher = 'none'
|
259 |
-
work_dir = './work_dirs/
|
|
|
42 |
dict(
|
43 |
type='ImgAugWrapper',
|
44 |
args=[['Fliplr', 0.5], {
|
45 |
+
'cls': 'CoarseDropout',
|
46 |
+
'p': (0.0005, 0.001),
|
47 |
+
'size_percent': 0.4
|
48 |
+
}, {
|
49 |
'cls': 'Affine',
|
50 |
'rotate': [-10, 10]
|
51 |
+
}, {
|
52 |
+
'cls': 'GaussianBlur',
|
53 |
+
'sigma': (1, 1.6)
|
54 |
+
}, ['Resize', [0.5, 3.0]], {
|
55 |
+
'cls': 'CoarseDropout',
|
56 |
+
'p': (0.0005, 0.001),
|
57 |
+
'size_percent': 0.4
|
58 |
+
}]),
|
59 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
60 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
61 |
dict(type='Pad', size=(640, 640)),
|
|
|
78 |
type='PackTextDetInputs',
|
79 |
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
80 |
]
|
81 |
+
thvc_textdet_data_root = 'data/det/vl+vc-textdet'
|
82 |
+
thvc_textdet_train = dict(
|
83 |
type='OCRDataset',
|
84 |
+
data_root='data/det/vl+vc-textdet',
|
85 |
ann_file='textdet_train.json',
|
86 |
data_prefix=dict(img_path='imgs/'),
|
87 |
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
|
|
103 |
dict(
|
104 |
type='ImgAugWrapper',
|
105 |
args=[['Fliplr', 0.5], {
|
106 |
+
'cls': 'CoarseDropout',
|
107 |
+
'p': (0.0005, 0.001),
|
108 |
+
'size_percent': 0.4
|
109 |
+
}, {
|
110 |
'cls': 'Affine',
|
111 |
'rotate': [-10, 10]
|
112 |
+
}, {
|
113 |
+
'cls': 'GaussianBlur',
|
114 |
+
'sigma': (1, 1.6)
|
115 |
+
}, ['Resize', [0.5, 3.0]], {
|
116 |
+
'cls': 'CoarseDropout',
|
117 |
+
'p': (0.0005, 0.001),
|
118 |
+
'size_percent': 0.4
|
119 |
+
}]),
|
120 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
121 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
122 |
dict(type='Pad', size=(640, 640)),
|
|
|
124 |
type='PackTextDetInputs',
|
125 |
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
126 |
])
|
127 |
+
thvc_textdet_test = dict(
|
128 |
+
type='OCRDataset',
|
129 |
+
data_root='data/det/vl+vc-textdet',
|
130 |
+
ann_file='textdet_test.json',
|
131 |
+
data_prefix=dict(img_path='imgs/'),
|
132 |
+
test_mode=True,
|
133 |
+
pipeline=None)
|
134 |
+
thvote_textdet_data_root = 'data/det/textdet-thvote'
|
135 |
+
thvote_textdet_train = dict(
|
136 |
+
type='OCRDataset',
|
137 |
+
data_root='data/det/textdet-thvote',
|
138 |
+
ann_file='textdet_train.json',
|
139 |
+
data_prefix=dict(img_path='imgs/'),
|
140 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
141 |
+
pipeline=None)
|
142 |
+
thvote_textdet_test = dict(
|
143 |
type='OCRDataset',
|
144 |
data_root='data/det/textdet-thvote',
|
145 |
ann_file='textdet_test.json',
|
|
|
170 |
timer=dict(type='IterTimerHook'),
|
171 |
logger=dict(type='LoggerHook', interval=5),
|
172 |
param_scheduler=dict(type='ParamSchedulerHook'),
|
173 |
+
checkpoint=dict(type='CheckpointHook', interval=5),
|
174 |
sampler_seed=dict(type='DistSamplerSeedHook'),
|
175 |
sync_buffer=dict(type='SyncBuffersHook'),
|
176 |
visualization=dict(
|
|
|
183 |
log_level = 'INFO'
|
184 |
log_processor = dict(type='LogProcessor', window_size=10, by_epoch=True)
|
185 |
load_from = None
|
186 |
+
resume = True
|
187 |
val_evaluator = dict(type='HmeanIOUMetric')
|
188 |
test_evaluator = dict(type='HmeanIOUMetric')
|
189 |
vis_backends = [dict(type='LocalVisBackend')]
|
|
|
191 |
type='TextDetLocalVisualizer',
|
192 |
name='visualizer',
|
193 |
vis_backends=[dict(type='LocalVisBackend')])
|
194 |
+
max_epochs = 30
|
195 |
optim_wrapper = dict(
|
196 |
+
type='OptimWrapper', optimizer=dict(type='Adam', lr=0.001))
|
197 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=30, val_interval=10)
|
|
|
198 |
val_cfg = dict(type='ValLoop')
|
199 |
test_cfg = dict(type='TestLoop')
|
200 |
+
param_scheduler = [dict(type='PolyLR', power=0.9, end=30)]
|
201 |
+
thvotecount_textdet_train = dict(
|
202 |
+
type='OCRDataset',
|
203 |
+
data_root='data/det/vl+vc-textdet',
|
204 |
+
ann_file='textdet_train.json',
|
205 |
+
data_prefix=dict(img_path='imgs/'),
|
206 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
207 |
+
pipeline=[
|
208 |
+
dict(
|
209 |
+
type='LoadImageFromFile',
|
210 |
+
file_client_args=dict(backend='disk'),
|
211 |
+
color_type='color_ignore_orientation'),
|
212 |
+
dict(
|
213 |
+
type='LoadOCRAnnotations',
|
214 |
+
with_polygon=True,
|
215 |
+
with_bbox=True,
|
216 |
+
with_label=True),
|
217 |
+
dict(
|
218 |
+
type='TorchVisionWrapper',
|
219 |
+
op='ColorJitter',
|
220 |
+
brightness=0.12549019607843137,
|
221 |
+
saturation=0.5),
|
222 |
+
dict(
|
223 |
+
type='ImgAugWrapper',
|
224 |
+
args=[['Fliplr', 0.5], {
|
225 |
+
'cls': 'CoarseDropout',
|
226 |
+
'p': (0.0005, 0.001),
|
227 |
+
'size_percent': 0.4
|
228 |
+
}, {
|
229 |
+
'cls': 'Affine',
|
230 |
+
'rotate': [-10, 10]
|
231 |
+
}, {
|
232 |
+
'cls': 'GaussianBlur',
|
233 |
+
'sigma': (1, 1.6)
|
234 |
+
}, ['Resize', [0.5, 3.0]], {
|
235 |
+
'cls': 'CoarseDropout',
|
236 |
+
'p': (0.0005, 0.001),
|
237 |
+
'size_percent': 0.4
|
238 |
+
}]),
|
239 |
+
dict(type='RandomCrop', min_side_ratio=0.1),
|
240 |
+
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
241 |
+
dict(type='Pad', size=(640, 640)),
|
242 |
+
dict(
|
243 |
+
type='PackTextDetInputs',
|
244 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
245 |
+
])
|
246 |
+
thvotecount_textdet_test = dict(
|
247 |
+
type='OCRDataset',
|
248 |
+
data_root='data/det/textdet-thvote',
|
249 |
+
ann_file='textdet_test.json',
|
250 |
+
data_prefix=dict(img_path='imgs/'),
|
251 |
+
test_mode=True,
|
252 |
+
pipeline=[
|
253 |
+
dict(
|
254 |
+
type='LoadImageFromFile',
|
255 |
+
file_client_args=dict(backend='disk'),
|
256 |
+
color_type='color_ignore_orientation'),
|
257 |
+
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
|
258 |
+
dict(
|
259 |
+
type='LoadOCRAnnotations',
|
260 |
+
with_polygon=True,
|
261 |
+
with_bbox=True,
|
262 |
+
with_label=True),
|
263 |
+
dict(
|
264 |
+
type='PackTextDetInputs',
|
265 |
+
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
266 |
+
])
|
267 |
train_dataloader = dict(
|
268 |
+
batch_size=40,
|
269 |
num_workers=8,
|
270 |
persistent_workers=True,
|
271 |
sampler=dict(type='DefaultSampler', shuffle=True),
|
272 |
dataset=dict(
|
273 |
type='OCRDataset',
|
274 |
+
data_root='data/det/vl+vc-textdet',
|
275 |
ann_file='textdet_train.json',
|
276 |
data_prefix=dict(img_path='imgs/'),
|
277 |
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
|
|
293 |
dict(
|
294 |
type='ImgAugWrapper',
|
295 |
args=[['Fliplr', 0.5], {
|
296 |
+
'cls': 'CoarseDropout',
|
297 |
+
'p': (0.0005, 0.001),
|
298 |
+
'size_percent': 0.4
|
299 |
+
}, {
|
300 |
'cls': 'Affine',
|
301 |
'rotate': [-10, 10]
|
302 |
+
}, {
|
303 |
+
'cls': 'GaussianBlur',
|
304 |
+
'sigma': (1, 1.6)
|
305 |
+
}, ['Resize', [0.5, 3.0]], {
|
306 |
+
'cls': 'CoarseDropout',
|
307 |
+
'p': (0.0005, 0.001),
|
308 |
+
'size_percent': 0.4
|
309 |
+
}]),
|
310 |
dict(type='RandomCrop', min_side_ratio=0.1),
|
311 |
dict(type='Resize', scale=(640, 640), keep_ratio=True),
|
312 |
dict(type='Pad', size=(640, 640)),
|
|
|
315 |
meta_keys=('img_path', 'ori_shape', 'img_shape'))
|
316 |
]))
|
317 |
val_dataloader = dict(
|
318 |
+
batch_size=8,
|
319 |
num_workers=4,
|
320 |
persistent_workers=True,
|
321 |
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
|
342 |
'scale_factor'))
|
343 |
]))
|
344 |
test_dataloader = dict(
|
345 |
+
batch_size=8,
|
346 |
num_workers=4,
|
347 |
persistent_workers=True,
|
348 |
sampler=dict(type='DefaultSampler', shuffle=False),
|
|
|
368 |
meta_keys=('img_path', 'ori_shape', 'img_shape',
|
369 |
'scale_factor'))
|
370 |
]))
|
371 |
+
auto_scale_lr = dict(base_batch_size=100)
|
372 |
launcher = 'none'
|
373 |
+
work_dir = './work_dirs/dbnet_resnet18_fpnc_votecount'
|
model/det/model.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4e79675b6bab2c627fbf19196dd0baf57c7016958892e75ffb0eed0bc3c467b
|
3 |
+
size 148596609
|