file_client_args = dict(backend='disk') model = dict( type='PSENet', backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=-1, norm_cfg=dict(type='SyncBN', requires_grad=True), init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), norm_eval=True, style='caffe'), neck=dict( type='FPNF', in_channels=[256, 512, 1024, 2048], out_channels=256, fusion_type='concat'), det_head=dict( type='PSEHead', in_channels=[256], hidden_dim=256, out_channel=7, module_loss=dict(type='PSEModuleLoss'), postprocessor=dict(type='PSEPostprocessor', text_repr_type='poly')), data_preprocessor=dict( type='TextDetDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32)) default_scope = 'mmocr' env_cfg = dict( cudnn_benchmark=True, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl')) randomness = dict(seed=None) default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=100), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=5), sampler_seed=dict(type='DistSamplerSeedHook'), sync_buffer=dict(type='SyncBuffersHook'), visualization=dict( type='VisualizationHook', interval=1, enable=False, show=False, draw_gt=False, draw_pred=False)) log_level = 'INFO' log_processor = dict(type='LogProcessor', window_size=100, by_epoch=True) load_from = None resume = True val_evaluator = dict(type='HmeanIOUMetric') test_evaluator = dict(type='HmeanIOUMetric') vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='TextDetLocalVisualizer', name='visualizer', vis_backends=[dict(type='LocalVisBackend')]) max_epochs = 50 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=0.001)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=50, val_interval=20) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') param_scheduler = [dict(type='PolyLR', power=0.9, end=50)] train_dataloader = dict( batch_size=10, num_workers=16, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='OCRDataset', data_root='data/det/vl+vc-textdet', ann_file='textdet_train.json', data_prefix=dict(img_path='imgs/'), filter_cfg=dict(filter_empty_gt=True, min_size=32), pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='TorchVisionWrapper', op='ColorJitter', brightness=0.12549019607843137, saturation=0.5), dict(type='FixInvalidPolygon'), dict( type='ShortScaleAspectJitter', short_size=736, scale_divisor=32), dict(type='RandomRotate', max_angle=10), dict(type='TextDetRandomCrop', target_size=(736, 736)), dict(type='Pad', size=(736, 736)), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ])) val_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(2240, 2240), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ])) test_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type='OCRDataset', data_root='data/det/textdet-thvote', ann_file='textdet_test.json', data_prefix=dict(img_path='imgs/'), test_mode=True, pipeline=[ dict( type='LoadImageFromFile', file_client_args=dict(backend='disk'), color_type='color_ignore_orientation'), dict(type='Resize', scale=(2240, 2240), keep_ratio=True), dict( type='LoadOCRAnnotations', with_polygon=True, with_bbox=True, with_label=True), dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor')) ])) auto_scale_lr = dict(base_batch_size=32) launcher = 'none' work_dir = './work_dirs/psenet_resnet50_fpnf_votecount'