File size: 5,909 Bytes
198bfc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import uuid
import base64
from unstructured.partition.pdf import partition_pdf
from langchain_openai import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.schema.messages import HumanMessage, SystemMessage
from langchain.schema.document import Document
from langchain_openai import OpenAIEmbeddings
from langchain_postgres.vectorstores import PGVector
from pinecone import Pinecone
from pinecone import ServerlessSpec
from langchain_pinecone import PineconeVectorStore

from dotenv import load_dotenv
load_dotenv()

openai_api_key = os.getenv("OPENAI_API_KEY")
POSTGRES_URL_EMBEDDINDS=os.getenv("POSTGRES_URL_EMBEDDINDS")
PINECONE_API_KEY=os.getenv("PINECONE_API_KEY")



filename="/home/bluebash-005/code/bluebash/poc/stramlit_pdf/data/fy2024.pdf"
output_path = "/home/bluebash-005/code/bluebash/poc/stramlit_pdf/images"
openai_ef = OpenAIEmbeddings()



text_elements = []
text_summaries = []

table_elements = []
table_summaries = []

image_elements = []
image_summaries = []


def file_reader():
    raw_pdf_elements = partition_pdf(
        filename=filename,
        extract_images_in_pdf=True,
        infer_table_structure=True,
        chunking_strategy="by_title",
        max_characters=4000,
        new_after_n_chars=3800,
        combine_text_under_n_chars=2000,
        extract_image_block_output_dir=output_path,
    )
    return raw_pdf_elements



def text_insert(raw_pdf_elements):
    summary_prompt = """
    Summarize the following {element_type}:
    {element}
    """

    prompt=PromptTemplate.from_template(summary_prompt)
    llm=ChatOpenAI(model="gpt-3.5-turbo", openai_api_key = openai_api_key, max_tokens=1024)
    runnable = prompt | llm

    for e in raw_pdf_elements:
        if 'CompositeElement' in repr(e):
            text_elements.append(e.text)
            summary = runnable.invoke({'element_type': 'text', 'element': e})
            text_summaries.append(summary.content)

        elif 'Table' in repr(e):
            table_elements.append(e.text)
            summary = runnable.invoke({'element_type': 'table', 'element': e})
            table_summaries.append(summary.content)


def image_insert():

    def encode_image(image_path):
        with open(image_path, "rb") as f:
            return base64.b64encode(f.read()).decode('utf-8')

    def summarize_image(encoded_image):
        prompt = [
            SystemMessage(content="You are a bot that is good at analyzing images."),
            HumanMessage(content=[
                {
                    "type": "text",
                    "text": "Describe the contents of this image."
                },
                {
                    "type": "image_url",
                    "image_url": {
                        "url": f"data:image/jpeg;base64,{encoded_image}"
                    },
                },
            ])
        ]
        response = ChatOpenAI(model="gpt-4-vision-preview", openai_api_key=openai_api_key, max_tokens=1024).invoke(prompt)
        return response.content
    

    for i in os.listdir(output_path):
        if i.endswith(('.png', '.jpg', '.jpeg')):
            image_path = os.path.join(output_path, i)
            encoded_image = encode_image(image_path)
            image_elements.append(encoded_image)
            summary = summarize_image(encoded_image)
            image_summaries.append(summary)


documents = []
retrieve_contents = []

def get_docummets():
    for e, s in zip(text_elements, text_summaries):
        i = str(uuid.uuid4())
        doc = Document(
            page_content = s,
            metadata = {
                'id': i,
                'type': 'text',
                'original_content': e
            }
        )
        retrieve_contents.append((i, e))
        documents.append(doc)
    print("text_element done")

    for e, s in zip(table_elements, table_summaries):
        doc = Document(
            page_content = s,
            metadata = {
                'id': i,
                'type': 'table',
                'original_content': e
            }
        )
        retrieve_contents.append((i, e))
        documents.append(doc)
    
    print("table_elements done")

    for e, s in zip(image_elements, image_summaries):
        doc = Document(
            page_content = s,
            metadata = {
                'id': i,
                'type': 'image',
                'original_content': e
            }
        )
        retrieve_contents.append((i, s))
        documents.append(doc)

    print("image_elements Done")

def add_docs_to_postgres(collection_name):
    vectorstore = PGVector(embeddings=openai_ef,collection_name=collection_name,connection=POSTGRES_URL_EMBEDDINDS,use_jsonb=True,)
    vectorstore.add_documents(documents)



def add_docs_to_pinecone(index_name):
    pc = Pinecone(api_key=PINECONE_API_KEY)

    spec = ServerlessSpec(cloud='aws', region='us-east-1')
    if index_name in pc.list_indexes().names():
        pc.delete_index(index_name)

    # we create a new index
    pc.create_index(
            index_name,
            dimension=1536,
            metric='dotproduct',
            spec=spec
        )
    import pdb
    pdb.set_trace()
    n=len(documents)//2
    doc1=documents[:n]
    doc2=documents[n:]

    vectorstore_from_docs = PineconeVectorStore.from_documents(
        doc1,
        index_name=index_name,
        embedding=openai_ef
    )




def main():
    collection_name="fy2024"
    print("started file reader")
    raw_pdf_elements=file_reader()
    print(raw_pdf_elements)
    print()

    text_insert(raw_pdf_elements)
    print("text_insert Done")
    image_insert()
    print("image_insert Done")
    print()
    get_docummets()
    print("get_docummets Done")
    #add_docs_to_postgres(collection_name)
    add_docs_to_pinecone(collection_name)
    print("Done")

if __name__=="__main__":
    main()