Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,134 +1,74 @@
|
|
1 |
from dotenv import load_dotenv
|
2 |
from openai import OpenAI
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import requests
|
6 |
from pypdf import PdfReader
|
7 |
import gradio as gr
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
"https://api.pushover.net/1/messages.json",
|
15 |
-
data={
|
16 |
-
"token": os.getenv("PUSHOVER_TOKEN"),
|
17 |
-
"user": os.getenv("PUSHOVER_USER"),
|
18 |
-
"message": text,
|
19 |
-
}
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def record_user_details(email, name="Name not provided", notes="not provided"):
|
24 |
-
push(f"Recording {name} with email {email} and notes {notes}")
|
25 |
-
return {"recorded": "ok"}
|
26 |
-
|
27 |
-
def record_unknown_question(question):
|
28 |
-
push(f"Recording {question}")
|
29 |
-
return {"recorded": "ok"}
|
30 |
-
|
31 |
-
record_user_details_json = {
|
32 |
-
"name": "record_user_details",
|
33 |
-
"description": "Use this tool to record that a user is interested in being in touch and provided an email address",
|
34 |
-
"parameters": {
|
35 |
-
"type": "object",
|
36 |
-
"properties": {
|
37 |
-
"email": {
|
38 |
-
"type": "string",
|
39 |
-
"description": "The email address of this user"
|
40 |
-
},
|
41 |
-
"name": {
|
42 |
-
"type": "string",
|
43 |
-
"description": "The user's name, if they provided it"
|
44 |
-
}
|
45 |
-
,
|
46 |
-
"notes": {
|
47 |
-
"type": "string",
|
48 |
-
"description": "Any additional information about the conversation that's worth recording to give context"
|
49 |
-
}
|
50 |
-
},
|
51 |
-
"required": ["email"],
|
52 |
-
"additionalProperties": False
|
53 |
-
}
|
54 |
-
}
|
55 |
-
|
56 |
-
record_unknown_question_json = {
|
57 |
-
"name": "record_unknown_question",
|
58 |
-
"description": "Always use this tool to record any question that couldn't be answered as you didn't know the answer",
|
59 |
-
"parameters": {
|
60 |
-
"type": "object",
|
61 |
-
"properties": {
|
62 |
-
"question": {
|
63 |
-
"type": "string",
|
64 |
-
"description": "The question that couldn't be answered"
|
65 |
-
},
|
66 |
-
},
|
67 |
-
"required": ["question"],
|
68 |
-
"additionalProperties": False
|
69 |
-
}
|
70 |
-
}
|
71 |
-
|
72 |
-
tools = [{"type": "function", "function": record_user_details_json},
|
73 |
-
{"type": "function", "function": record_unknown_question_json}]
|
74 |
|
75 |
|
76 |
class Me:
|
77 |
-
|
78 |
def __init__(self):
|
79 |
self.openai = OpenAI()
|
80 |
-
self.name = "
|
|
|
|
|
81 |
reader = PdfReader("me/linkedin.pdf")
|
82 |
self.linkedin = ""
|
83 |
for page in reader.pages:
|
84 |
text = page.extract_text()
|
85 |
if text:
|
86 |
self.linkedin += text
|
|
|
|
|
87 |
with open("me/summary.txt", "r", encoding="utf-8") as f:
|
88 |
self.summary = f.read()
|
89 |
|
90 |
-
|
91 |
-
def handle_tool_call(self, tool_calls):
|
92 |
-
results = []
|
93 |
-
for tool_call in tool_calls:
|
94 |
-
tool_name = tool_call.function.name
|
95 |
-
arguments = json.loads(tool_call.function.arguments)
|
96 |
-
print(f"Tool called: {tool_name}", flush=True)
|
97 |
-
tool = globals().get(tool_name)
|
98 |
-
result = tool(**arguments) if tool else {}
|
99 |
-
results.append({"role": "tool","content": json.dumps(result),"tool_call_id": tool_call.id})
|
100 |
-
return results
|
101 |
-
|
102 |
def system_prompt(self):
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
|
111 |
-
system_prompt += f"\n\n## Summary:\n{self.summary}\n\n## LinkedIn Profile:\n{self.linkedin}\n\n"
|
112 |
-
system_prompt += f"With this context, please chat with the user, always staying in character as {self.name}."
|
113 |
-
return system_prompt
|
114 |
-
|
115 |
def chat(self, message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
done = True
|
128 |
-
return response.choices[0].message.content
|
129 |
-
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
me = Me()
|
133 |
gr.ChatInterface(me.chat, type="messages").launch(share=True)
|
134 |
-
|
|
|
1 |
from dotenv import load_dotenv
|
2 |
from openai import OpenAI
|
|
|
|
|
|
|
3 |
from pypdf import PdfReader
|
4 |
import gradio as gr
|
5 |
+
import datetime
|
6 |
+
from collections import defaultdict
|
7 |
+
import os
|
8 |
|
9 |
+
# Load environment variables from .env (includes OPENAI_API_KEY)
|
10 |
load_dotenv(override=True)
|
11 |
|
12 |
+
# In-memory daily question tracker
|
13 |
+
user_question_counter = defaultdict(lambda: {"date": None, "count": 0})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
class Me:
|
|
|
17 |
def __init__(self):
|
18 |
self.openai = OpenAI()
|
19 |
+
self.name = "Narendra"
|
20 |
+
|
21 |
+
# Load LinkedIn profile text from PDF
|
22 |
reader = PdfReader("me/linkedin.pdf")
|
23 |
self.linkedin = ""
|
24 |
for page in reader.pages:
|
25 |
text = page.extract_text()
|
26 |
if text:
|
27 |
self.linkedin += text
|
28 |
+
|
29 |
+
# Load summary text
|
30 |
with open("me/summary.txt", "r", encoding="utf-8") as f:
|
31 |
self.summary = f.read()
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def system_prompt(self):
|
34 |
+
return (
|
35 |
+
f"You are acting as {self.name}, an experienced Python technical interviewer. "
|
36 |
+
f"You are helping users by asking or answering Python-related technical questions. "
|
37 |
+
f"Always stay professional, helpful, and concise. Do not generate responses over 100 tokens. "
|
38 |
+
f"The user can only ask 3 questions per day—enforce this limit politely. "
|
39 |
+
f"\n\n## About {self.name} (your interviewer):\n"
|
40 |
+
f"{self.summary}\n\n"
|
41 |
+
f"## LinkedIn Profile:\n{self.linkedin}\n\n"
|
42 |
+
f"Use this background to answer in character as {self.name}."
|
43 |
+
)
|
44 |
|
|
|
|
|
|
|
|
|
45 |
def chat(self, message, history):
|
46 |
+
user_id = "user" # Replace with session-based ID for real tracking
|
47 |
+
today = datetime.date.today()
|
48 |
+
record = user_question_counter[user_id]
|
49 |
+
|
50 |
+
# Reset question count if date changed
|
51 |
+
if record["date"] != today:
|
52 |
+
record["date"] = today
|
53 |
+
record["count"] = 0
|
54 |
+
|
55 |
+
# Check daily question limit
|
56 |
+
if record["count"] >= 3:
|
57 |
+
return "🚫 You've reached your daily limit of 3 questions. Please try again tomorrow."
|
58 |
+
|
59 |
+
# Prepare conversation
|
60 |
messages = [{"role": "system", "content": self.system_prompt()}] + history + [{"role": "user", "content": message}]
|
61 |
+
|
62 |
+
response = self.openai.chat.completions.create(
|
63 |
+
model="gpt-4o-mini",
|
64 |
+
messages=messages,
|
65 |
+
max_tokens=100
|
66 |
+
)
|
67 |
+
|
68 |
+
record["count"] += 1
|
69 |
+
return f"👋 Narendra is your Python interviewer. Let's begin!\n\n{response.choices[0].message.content}"
|
70 |
+
|
|
|
|
|
|
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
me = Me()
|
74 |
gr.ChatInterface(me.chat, type="messages").launch(share=True)
|
|