Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,629 Bytes
1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 1034391 4aa0f34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.nn import RMSNorm
from .config import DiaConfig
from .state import DecoderInferenceState, EncoderInferenceState, KVCache
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
class DenseGeneral(nn.Module):
"""
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
for the generalized matrix multiplication. Weight/bias shapes are calculated
and parameters created during initialization based on config.
`load_weights` validates shapes and copies data.
Attributes:
axis (Tuple[int, ...]): Input axis or axes to contract.
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
use_bias (bool): Whether to add a bias term.
weight (nn.Parameter): The kernel parameter.
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
"""
def __init__(
self,
in_shapes: tuple[int, ...],
out_features: tuple[int, ...],
axis: tuple[int, ...] = (-1,),
weight_dtype: torch.dtype | None = None,
device: torch.device | None = None,
):
super().__init__()
self.in_shapes = in_shapes
self.out_features = out_features
self.axis = axis
self.kernel_shape = self.in_shapes + self.out_features
factory_kwargs = {"device": device, "dtype": weight_dtype}
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
self.register_parameter("bias", None)
def forward(self, inputs: Tensor) -> Tensor:
norm_axis = _normalize_axes(self.axis, inputs.ndim)
kernel_contract_axes = tuple(range(len(norm_axis)))
output = torch.tensordot(
inputs.to(self.weight.dtype),
self.weight,
dims=(norm_axis, kernel_contract_axes),
).to(inputs.dtype)
return output
class MlpBlock(nn.Module):
"""MLP block using DenseGeneral."""
def __init__(
self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype
):
super().__init__()
self.dtype = compute_dtype
self.wi_fused = DenseGeneral(
in_shapes=(embed_dim,),
out_features=(2, intermediate_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.wo = DenseGeneral(
in_shapes=(intermediate_dim,),
out_features=(embed_dim,),
axis=(-1,),
weight_dtype=compute_dtype,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass."""
fused_x = self.wi_fused(x)
gate = fused_x[..., 0, :]
up = fused_x[..., 1, :]
hidden = torch.mul(F.silu(gate), up).to(self.dtype)
output = self.wo(hidden)
return output
class RotaryEmbedding(nn.Module):
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
def __init__(
self,
embedding_dims: int,
min_timescale: int = 1,
max_timescale: int = 10000,
dtype: torch.dtype = torch.float32,
):
super().__init__()
if embedding_dims % 2 != 0:
raise ValueError("Embedding dim must be even for RoPE.")
self.embedding_dims = embedding_dims
self.min_timescale = min_timescale
self.max_timescale = max_timescale
self.dtype = dtype
half_embedding_dim = embedding_dims // 2
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
self.register_buffer(
"timescale",
self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction,
persistent=False,
)
def extra_repr(self) -> str:
s = f"{self.timescale.shape}"
return s
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
"""Applies RoPE."""
position = position.unsqueeze(-1).unsqueeze(-1)
timescale = self.timescale.to(inputs.device)
sinusoid_inp = position / timescale
sin = torch.sin(sinusoid_inp).to(inputs.dtype)
cos = torch.cos(sinusoid_inp).to(inputs.dtype)
first_half, second_half = torch.chunk(inputs, 2, dim=-1)
first_part = first_half * cos - second_half * sin
second_part = second_half * cos + first_half * sin
return torch.cat((first_part, second_part), dim=-1)
class Attention(nn.Module):
"""Attention using DenseGeneral."""
def __init__(
self,
config: DiaConfig,
q_embed_dim: int,
kv_embed_dim: int,
num_query_heads: int,
num_kv_heads: int,
head_dim: int,
compute_dtype: torch.dtype,
is_cross_attn: bool = False,
out_embed_dim: int | None = None,
):
super().__init__()
self.num_query_heads = num_query_heads
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
self.is_cross_attn = is_cross_attn
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
self.projected_query_dim = num_query_heads * head_dim
if num_query_heads % num_kv_heads != 0:
raise ValueError(
f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})"
)
self.num_gqa_groups = num_query_heads // num_kv_heads
# --- Projection Layers using DenseGeneral ---
self.q_proj = DenseGeneral(
in_shapes=(q_embed_dim,),
out_features=(num_query_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.k_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.v_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.o_proj = DenseGeneral(
in_shapes=(num_query_heads, head_dim),
out_features=(self.output_dim,),
axis=(-2, -1),
weight_dtype=compute_dtype,
)
# --- Rotary Embedding ---
self.rotary_emb = RotaryEmbedding(
embedding_dims=self.head_dim,
min_timescale=config.model.rope_min_timescale,
max_timescale=config.model.rope_max_timescale,
dtype=compute_dtype,
)
def forward(
self,
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
Xkv: torch.Tensor, # (B, S, E) S = 1 in AR generation
q_positions: torch.Tensor, # (B, T)
kv_positions: torch.Tensor | None = None, # (B, S)
attn_mask: torch.Tensor
| None = None, # None in Decoder Self Attention, Valid mask in Others
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
prefill: bool = False,
is_causal: bool = False,
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
"""
Performs attention calculation with optional KV caching.
Args:
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
q_positions: Positions for queries (B, T).
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
attn_mask: Attention mask.
cache: KVCache.
prefill: If True, use prefill mode.
Returns:
A tuple containing:
- output: The attention output tensor (B, T, output_dim).
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
"""
if kv_positions is None:
kv_positions = q_positions
original_dtype = Xq.dtype
Xq_BxTxNxH = self.q_proj(Xq)
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
attn_k: torch.Tensor | None = None
attn_v: torch.Tensor | None = None
if self.is_cross_attn:
attn_k, attn_v = cache.k, cache.v
else:
Xk_BxSxKxH = self.k_proj(Xkv) # (B, S, K, H)
Xv_BxSxKxH = self.v_proj(Xkv) # (B, S, K, H)
Xk_BxSxKxH = self.rotary_emb(
Xk_BxSxKxH, position=kv_positions
) # (B, S, K, H)
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
if cache is None:
attn_k = Xk_BxKxSxH
attn_v = Xv_BxKxSxH
else:
if prefill:
attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
cache.prefill(attn_k, attn_v)
else:
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH)
attn_output = F.scaled_dot_product_attention(
Xq_BxNxTxH,
attn_k,
attn_v,
attn_mask=attn_mask,
scale=1.0,
enable_gqa=self.num_gqa_groups > 1,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
output = self.o_proj(attn_output)
return output.to(original_dtype)
class EncoderLayer(nn.Module):
"""Transformer Encoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
embed_dim = enc_config.n_embd
self.pre_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.self_attention = Attention(
config,
q_embed_dim=embed_dim,
kv_embed_dim=embed_dim,
num_query_heads=enc_config.n_head,
num_kv_heads=enc_config.n_head,
head_dim=enc_config.head_dim,
compute_dtype=compute_dtype,
is_cross_attn=False,
out_embed_dim=embed_dim,
)
self.post_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.mlp = MlpBlock(
embed_dim=embed_dim,
intermediate_dim=enc_config.n_hidden,
compute_dtype=compute_dtype,
)
def forward(
self,
x: torch.Tensor,
state: EncoderInferenceState,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x)
sa_out = self.self_attention(
Xq=x_norm,
Xkv=x_norm,
q_positions=state.positions,
kv_positions=state.positions,
attn_mask=state.attn_mask,
)
x = residual + sa_out
residual = x
x_norm = self.post_sa_norm(x)
mlp_out = self.mlp(x_norm)
x = residual + mlp_out
return x
class Encoder(nn.Module):
"""Transformer Encoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
self.embedding = nn.Embedding(
model_config.src_vocab_size,
enc_config.n_embd,
dtype=compute_dtype,
)
self.layers = nn.ModuleList(
[EncoderLayer(config, compute_dtype) for _ in range(enc_config.n_layer)]
)
self.norm = RMSNorm(
enc_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
def forward(
self,
x_ids: torch.Tensor,
state: EncoderInferenceState,
) -> torch.Tensor:
x = self.embedding(x_ids)
for layer in self.layers:
x = layer(x, state)
x = self.norm(x)
return x
class DecoderLayer(nn.Module):
"""Transformer Decoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
enc_config = config.model.encoder
dec_embed_dim = dec_config.n_embd
enc_embed_dim = enc_config.n_embd
# Norms
self.pre_sa_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_ca_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_mlp_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
# Self-Attention (GQA) with Causal Masking
self.self_attention = Attention(
config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=dec_embed_dim,
num_query_heads=dec_config.gqa_query_heads,
num_kv_heads=dec_config.kv_heads,
head_dim=dec_config.gqa_head_dim,
compute_dtype=compute_dtype,
is_cross_attn=False,
out_embed_dim=dec_embed_dim,
)
# Cross-Attention (MHA)
self.cross_attention = Attention(
config=config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
num_query_heads=dec_config.cross_query_heads,
num_kv_heads=dec_config.cross_query_heads,
head_dim=dec_config.cross_head_dim,
compute_dtype=compute_dtype,
is_cross_attn=True,
out_embed_dim=dec_embed_dim,
)
# MLP
self.mlp = MlpBlock(
embed_dim=dec_embed_dim,
intermediate_dim=dec_config.n_hidden,
compute_dtype=compute_dtype,
)
def forward(
self,
x: torch.Tensor,
state: DecoderInferenceState,
self_attn_cache: KVCache | None = None,
cross_attn_cache: KVCache | None = None,
prefill: bool = False,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x)
sa_out = self.self_attention(
Xq=x_norm, # (2, 1, D)
Xkv=x_norm, # (2, 1, D)
q_positions=state.dec_positions, # (2, 1)
kv_positions=state.dec_positions, # (2, 1)
attn_mask=None,
cache=self_attn_cache,
prefill=prefill,
is_causal=prefill,
)
x = residual + sa_out
residual = x
x_norm = self.pre_ca_norm(x)
ca_out = self.cross_attention(
Xq=x_norm,
Xkv=state.enc_out,
q_positions=state.dec_positions,
kv_positions=state.enc_positions,
attn_mask=state.dec_cross_attn_mask,
cache=cross_attn_cache,
)
x = residual + ca_out
residual = x
x_norm = self.pre_mlp_norm(x)
mlp_out = self.mlp(x_norm)
x = residual + mlp_out
return x
class Decoder(nn.Module):
"""Transformer Decoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
data_config = config.data
self.num_channels = data_config.channels
self.num_layers = dec_config.n_layer
self.embeddings = nn.ModuleList(
[
nn.Embedding(
model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype
)
for _ in range(self.num_channels)
]
)
self.layers = nn.ModuleList(
[
DecoderLayer(config=config, compute_dtype=compute_dtype)
for _ in range(self.num_layers)
]
)
self.norm = RMSNorm(
dec_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.logits_dense = DenseGeneral(
in_shapes=(dec_config.n_embd,),
out_features=(self.num_channels, model_config.tgt_vocab_size),
axis=(-1,),
weight_dtype=compute_dtype,
)
def precompute_cross_attn_cache(
self,
enc_out: torch.Tensor, # (B, S, E)
enc_positions: torch.Tensor, # (B, S)
) -> list[KVCache]:
"""
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
"""
per_layer_kv_cache: list[KVCache] = []
for layer in self.layers:
cross_attn_module = layer.cross_attention
k_proj = cross_attn_module.k_proj(enc_out)
v_proj = cross_attn_module.v_proj(enc_out)
k_proj = cross_attn_module.rotary_emb(k_proj, position=enc_positions)
k = k_proj.transpose(1, 2)
v = v_proj.transpose(1, 2)
per_layer_kv_cache.append(KVCache.from_kv(k, v))
return per_layer_kv_cache
def decode_step(
self,
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
state: DecoderInferenceState,
) -> torch.Tensor:
"""
Performs a single decoding step, managing KV caches layer by layer.
Returns:
A tuple containing:
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
"""
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_Bx1xC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
for i, layer in enumerate(self.layers):
self_cache = state.self_attn_cache[i]
cross_cache = state.cross_attn_cache[i]
x = layer(
x, # (2, 1, D)
state,
self_attn_cache=self_cache,
cross_attn_cache=cross_cache,
)
x = self.norm(x)
logits_Bx1xCxV = self.logits_dense(x)
return logits_Bx1xCxV.to(torch.float32)
def forward(
self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState
) -> torch.Tensor:
"""
Forward pass for the Decoder stack, managing KV caches.
Args:
tgt_ids_BxTxC: Target token IDs (B, T, C).
encoder_out: Output from the encoder (B, S, E).
tgt_positions: Positions for target sequence (B, T).
src_positions: Positions for source sequence (B, S).
self_attn_mask: Mask for self-attention.
cross_attn_mask: Mask for cross-attention.
past_key_values: List containing the self-attention KV cache for each layer
from the previous decoding step. `len(past_key_values)` should
equal `num_layers`.
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
derived from `encoder_out`. This is passed identically
to all layers.
Returns:
A tuple containing:
- logits: The final output logits (B, T, C * V), cast to float32.
- present_key_values: A list containing the updated self-attention KV cache
for each layer for the *current* decoding step.
"""
_, _, num_channels_in = tgt_ids_BxTxC.shape
assert num_channels_in == self.num_channels, "Input channels mismatch"
# Embeddings
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_BxTxC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
for i, layer in enumerate(self.layers):
self_cache = state.self_attn_cache[i]
cross_cache = state.cross_attn_cache[i]
x = layer(
x,
state,
self_attn_cache=self_cache,
cross_attn_cache=cross_cache,
prefill=True,
)
# Final Norm
x = self.norm(x)
logits_BxTxCxV = self.logits_dense(x)
return logits_BxTxCxV.to(torch.float32)
class DiaModel(nn.Module):
"""PyTorch Dia Model using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
self.encoder = Encoder(config, compute_dtype)
self.decoder = Decoder(config, compute_dtype)
|