File size: 34,282 Bytes
4aa0f34
 
e43723b
4aa0f34
1034391
 
e43723b
1034391
 
4aa0f34
 
 
 
 
 
1034391
4aa0f34
 
 
 
 
e43723b
4aa0f34
 
 
 
 
 
 
 
1034391
 
 
 
 
 
e43723b
 
1034391
 
 
 
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
e43723b
1034391
 
 
 
4aa0f34
 
 
1034391
 
 
e43723b
 
 
 
 
 
1034391
 
e43723b
4aa0f34
 
1034391
 
 
 
 
 
 
 
 
4aa0f34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
4aa0f34
 
 
 
 
e43723b
4aa0f34
1034391
 
 
 
e43723b
4aa0f34
e43723b
1034391
 
 
 
 
 
4aa0f34
 
 
 
e43723b
1034391
e43723b
 
 
 
 
 
 
 
1034391
 
4aa0f34
 
 
 
 
 
e43723b
4aa0f34
1034391
 
 
 
 
e43723b
4aa0f34
e43723b
1034391
 
 
 
 
 
 
 
 
 
 
 
e43723b
1034391
 
4aa0f34
 
1034391
 
 
4aa0f34
 
 
1034391
4aa0f34
1034391
e43723b
 
1034391
 
 
 
4aa0f34
e43723b
4aa0f34
 
e43723b
1034391
 
 
 
 
 
 
e43723b
 
4aa0f34
e43723b
1034391
 
 
 
 
 
 
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
 
e43723b
 
 
 
 
 
 
 
 
 
1034391
 
 
e43723b
1034391
 
 
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
1034391
 
e43723b
 
1034391
 
e43723b
 
 
 
 
1034391
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
1034391
4aa0f34
e43723b
 
 
1034391
e43723b
 
 
 
 
 
 
1034391
e43723b
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
e43723b
 
 
 
 
4aa0f34
e43723b
 
4aa0f34
 
 
 
e43723b
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
e43723b
 
4aa0f34
 
 
 
e43723b
 
 
4aa0f34
 
e43723b
4aa0f34
e43723b
4aa0f34
 
e43723b
 
 
 
 
4aa0f34
e43723b
4aa0f34
e43723b
 
 
 
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
 
 
e43723b
4aa0f34
 
 
 
 
 
 
e43723b
4aa0f34
e43723b
4aa0f34
e43723b
 
 
 
4aa0f34
 
e43723b
 
4aa0f34
 
 
 
 
 
 
 
 
 
 
 
e43723b
 
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
e43723b
 
 
4aa0f34
e43723b
 
4aa0f34
 
e43723b
 
4aa0f34
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
e43723b
4aa0f34
 
 
 
 
 
e43723b
4aa0f34
 
 
 
 
 
 
 
 
 
e43723b
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
 
e43723b
 
 
 
 
 
4aa0f34
 
e43723b
 
 
 
 
 
 
 
 
4aa0f34
 
 
1034391
 
 
 
e43723b
 
1034391
e43723b
1034391
4aa0f34
e43723b
 
 
 
 
 
 
 
 
4aa0f34
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
e43723b
 
 
1034391
 
4aa0f34
 
 
 
 
1034391
4aa0f34
 
1034391
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
e43723b
 
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
4aa0f34
 
 
 
e43723b
4aa0f34
 
1034391
e43723b
4aa0f34
e43723b
 
 
 
 
4aa0f34
e43723b
 
 
 
 
4aa0f34
 
 
 
 
 
e43723b
1034391
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034391
4aa0f34
e43723b
4aa0f34
 
e43723b
 
 
 
4aa0f34
1034391
e43723b
 
4aa0f34
e43723b
4aa0f34
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa0f34
 
e43723b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
import time
from enum import Enum
from typing import Callable

import numpy as np
import torch
import torch.nn.functional as F
import torchaudio

from .audio import (
    apply_audio_delay,
    build_delay_indices,
    build_revert_indices,
    revert_audio_delay,
)
from .config import DiaConfig
from .layers import DiaModel
from .state import DecoderInferenceState, DecoderOutput, EncoderInferenceState


DEFAULT_SAMPLE_RATE = 44100
SAMPLE_RATE_RATIO = 512


def _get_default_device():
    if torch.cuda.is_available():
        return torch.device("cuda")
    elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
        return torch.device("mps")
    return torch.device("cpu")


def _sample_next_token(
    logits_BCxV: torch.Tensor,
    temperature: float,
    top_p: float,
    top_k: int | None,
    audio_eos_value: int,
) -> torch.Tensor:
    if temperature == 0.0:
        return torch.argmax(logits_BCxV, dim=-1)

    logits_BCxV = logits_BCxV / temperature

    if audio_eos_value is not None and audio_eos_value >= 0:
        top_logit_indices_BC = torch.argmax(logits_BCxV, dim=-1)
        eos_not_highest_mask_BC = top_logit_indices_BC != audio_eos_value
        mask_eos_unless_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
        mask_eos_unless_highest_BCxV[eos_not_highest_mask_BC, audio_eos_value] = True
        logits_BCxV = logits_BCxV.masked_fill(mask_eos_unless_highest_BCxV, -torch.inf)
        eos_highest_mask_BC = top_logit_indices_BC == audio_eos_value
        mask_eos_highest_BCxV = torch.zeros_like(logits_BCxV, dtype=torch.bool)
        mask_eos_highest_BCxV[eos_highest_mask_BC, :audio_eos_value] = True
        logits_BCxV = logits_BCxV.masked_fill(mask_eos_highest_BCxV, -torch.inf)

    if top_k is not None:
        _, top_k_indices_BCxV = torch.topk(logits_BCxV, k=top_k, dim=-1)
        mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
        mask = mask.scatter(dim=-1, index=top_k_indices_BCxV, value=False)
        logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)

    if top_p < 1.0:
        probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
        sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(
            probs_BCxV, dim=-1, descending=True
        )
        cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)

        sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
        sorted_indices_to_remove_BCxV = torch.roll(
            sorted_indices_to_remove_BCxV, shifts=1, dims=-1
        )
        sorted_indices_to_remove_BCxV[..., 0] = torch.zeros_like(
            sorted_indices_to_remove_BCxV[..., 0]
        )

        indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
        indices_to_remove_BCxV = indices_to_remove_BCxV.scatter(
            dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
        )
        logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)

    final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)

    sampled_indices_BC = torch.multinomial(final_probs_BCxV, num_samples=1)
    sampled_indices_C = sampled_indices_BC.squeeze(-1)
    return sampled_indices_C


class ComputeDtype(str, Enum):
    FLOAT32 = "float32"
    FLOAT16 = "float16"
    BFLOAT16 = "bfloat16"

    def to_dtype(self) -> torch.dtype:
        if self == ComputeDtype.FLOAT32:
            return torch.float32
        elif self == ComputeDtype.FLOAT16:
            return torch.float16
        elif self == ComputeDtype.BFLOAT16:
            return torch.bfloat16
        else:
            raise ValueError(f"Unsupported compute dtype: {self}")


class Dia:
    def __init__(
        self,
        config: DiaConfig,
        compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
        device: torch.device | None = None,
        load_dac: bool = True,
    ):
        """Initializes the Dia model.

        Args:
            config: The configuration object for the model.
            compute_dtype: The computation dtype to use.
            device: The device to load the model onto. If None, will automatically select the best available device.
            load_dac: Whether to load the DAC model.

        Raises:
            RuntimeError: If there is an error loading the DAC model.
        """
        super().__init__()
        self.config = config
        self.device = device if device is not None else _get_default_device()
        if isinstance(compute_dtype, str):
            compute_dtype = ComputeDtype(compute_dtype)
        self.compute_dtype = compute_dtype.to_dtype()
        self.model: DiaModel = DiaModel(config, self.compute_dtype)
        self.dac_model = None
        self._compiled_step = None
        self.load_dac = load_dac

        if not self.load_dac:
            print("Warning: DAC model will not be loaded. This is not recommended.")

        if torch.cuda.is_available():
            torch.backends.cuda.matmul.allow_tf32 = True

    @classmethod
    def from_local(
        cls,
        config_path: str,
        checkpoint_path: str,
        compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
        device: torch.device | None = None,
        load_dac: bool = True,
    ) -> "Dia":
        """Loads the Dia model from local configuration and checkpoint files.

        Args:
            config_path: Path to the configuration JSON file.
            checkpoint_path: Path to the model checkpoint (.pth) file.
            compute_dtype: The computation dtype to use.
            device: The device to load the model onto. If None, will automatically select the best available device.
            load_dac: Whether to load the DAC model.

        Returns:
            An instance of the Dia model loaded with weights and set to eval mode.

        Raises:
            FileNotFoundError: If the config or checkpoint file is not found.
            RuntimeError: If there is an error loading the checkpoint.
        """
        config = DiaConfig.load(config_path)
        if config is None:
            raise FileNotFoundError(f"Config file not found at {config_path}")

        dia = cls(config, compute_dtype, device, load_dac)

        try:
            state_dict = torch.load(checkpoint_path, map_location=dia.device)
            dia.model.load_state_dict(state_dict)
        except FileNotFoundError:
            raise FileNotFoundError(f"Checkpoint file not found at {checkpoint_path}")
        except Exception as e:
            raise RuntimeError(
                f"Error loading checkpoint from {checkpoint_path}"
            ) from e

        dia.model.to(dia.device)
        dia.model.eval()
        if load_dac:
            dia._load_dac_model()
        return dia

    @classmethod
    def from_pretrained(
        cls,
        model_name: str = "nari-labs/Dia-1.6B-0626",
        compute_dtype: str | ComputeDtype = ComputeDtype.FLOAT32,
        device: torch.device | None = None,
        load_dac: bool = True,
    ) -> "Dia":
        """Loads the Dia model from a Hugging Face Hub repository.

        Downloads the configuration and checkpoint files from the specified
        repository ID and then loads the model.

        Args:
            model_name: The Hugging Face Hub repository ID (e.g., "nari-labs/Dia-1.6B-0626").
            compute_dtype: The computation dtype to use.
            device: The device to load the model onto. If None, will automatically select the best available device.
            load_dac: Whether to load the DAC model.

        Returns:
            An instance of the Dia model loaded with weights and set to eval mode.

        Raises:
            FileNotFoundError: If config or checkpoint download/loading fails.
            RuntimeError: If there is an error loading the checkpoint.
        """
        if isinstance(compute_dtype, str):
            compute_dtype = ComputeDtype(compute_dtype)

        # Load model directly using DiaModel's from_pretrained which handles HF download
        try:
            loaded_model = DiaModel.from_pretrained(
                model_name, compute_dtype=compute_dtype.to_dtype()
            )
        except Exception as e:
            raise RuntimeError(
                f"Error loading model from Hugging Face Hub ({model_name})"
            ) from e

        config = loaded_model.config  # Get config from the loaded model
        dia = cls(config, compute_dtype, device, load_dac)

        dia.model = loaded_model  # Assign the already loaded model
        dia.model.to(dia.device)
        dia.model.eval()
        if load_dac:
            dia._load_dac_model()
        return dia

    def _load_dac_model(self):
        """Loads the Descript Audio Codec (DAC) model.

        Downloads the DAC model if necessary and loads it onto the specified device.
        Sets the DAC model to evaluation mode.

        Raises:
            RuntimeError: If downloading or loading the DAC model fails.
        """
        import dac

        try:
            dac_model_path = dac.utils.download()
            dac_model = dac.DAC.load(dac_model_path).to(self.device)
            dac_model.eval()  # Ensure DAC is in eval mode
        except Exception as e:
            raise RuntimeError("Failed to load DAC model") from e
        self.dac_model = dac_model

    def _encode_text(self, text: str) -> torch.Tensor:
        """Encodes the input text string into a tensor of token IDs using byte-level encoding.

        Special tokens [S1] and [S2] are replaced by their byte values. The resulting
        sequence is truncated to the maximum configured text length.

        Args:
            text: The input text string.

        Returns:
            A tensor containing the encoded byte token IDs.
        """
        max_len = self.config.encoder_config.max_position_embeddings

        byte_text = text.encode("utf-8")
        # Replace special tokens with their byte values if needed by the specific tokenizer/config
        # Assuming byte values 1 and 2 are correct placeholders based on original code
        replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
        text_tokens = list(replaced_bytes)
        return torch.tensor(
            text_tokens[:max_len],
            dtype=torch.long,
            device=self.device,
        )

    def _pad_text_input(self, text_tokens: list[torch.Tensor]) -> torch.Tensor:
        """Pads the text input to the maximum length."""
        text_pad_value = 0
        max_len = self.config.encoder_config.max_position_embeddings
        batch_size = len(text_tokens)

        src_tokens = torch.full(
            (batch_size, 1, max_len),
            fill_value=text_pad_value,
            dtype=torch.long,
            device=self.device,
        )
        for i in range(batch_size):
            current_len = len(text_tokens[i])
            src_tokens[i, 0, :current_len] = text_tokens[i]
        return src_tokens

    def _prepare_audio_prompt(
        self, audio_prompts: list[torch.Tensor | None]
    ) -> tuple[torch.Tensor, list[int]]:
        """Prepares the audio prompt tensor for the decoder.

        Handles padding, adds the beginning-of-sequence (BOS) token, applies the
        delay pattern, and determines the number of prefill steps for each item
        in the batch.

        Args:
            audio_prompts: A list of audio prompt tensors (encoded DAC frames) or None.
                           Each tensor should have shape [T, C].

        Returns:
            A tuple containing:
                - delayed_batch (torch.Tensor): The prepared audio prompt tensor with
                  delays applied, shape [B, T_max_padded, C].
                - prefill_steps (list[int]): A list containing the number of valid
                  tokens (including BOS) for each prompt in the batch.
        """
        num_channels = self.config.decoder_config.num_channels
        audio_bos_value = self.config.bos_token_id
        delay_pattern = self.config.delay_pattern
        max_delay_pattern = max(delay_pattern)
        batch_size = len(audio_prompts)

        max_len = (
            max(p.shape[0] if p is not None else 0 for p in audio_prompts)
            + max_delay_pattern
        )
        prefill_steps = []

        prefill = torch.full(
            (batch_size, max_len, num_channels),
            fill_value=-1,
            dtype=torch.int,
            device=self.device,
        )

        prefill[:, 0, :] = audio_bos_value

        for i in range(batch_size):
            prompt = audio_prompts[i]
            if prompt is not None:
                prompt = prompt.to(device=self.device, dtype=torch.int)
                prefill[i, 1 : prompt.shape[0] + 1, :] = prompt
                prefill_steps.append(prompt.shape[0] + 1)
            else:
                prefill_steps.append(1)

        delay_precomp = build_delay_indices(
            B=batch_size,
            T=max_len,
            C=num_channels,
            delay_pattern=delay_pattern,
        )

        delayed_batch = apply_audio_delay(
            audio_BxTxC=prefill,
            pad_value=-1,
            bos_value=audio_bos_value,
            precomp=delay_precomp,
        )

        return delayed_batch, prefill_steps

    def _prepare_generation(
        self,
        text: torch.Tensor,
        audio_prompts: list[torch.Tensor | None],
        max_tokens: int | None = None,
        attn_fn: Callable = F.scaled_dot_product_attention,
    ):
        """Initializes the model state for generation.

        Encodes the text input (conditional and unconditional), prepares the
        encoder and decoder states (including KV caches and cross-attention),
        prepares the audio prompt, and performs the initial decoder prefill steps
        based on the audio prompts.

        Args:
            text: The padded text input tensor, shape [B, 1, T_text].
            audio_prompts: A list of prepared audio prompt tensors or None.

        Returns:
            A tuple containing:
                - dec_state (DecoderInferenceState): The initialized decoder state.
                - dec_output (DecoderOutput): The initialized decoder output manager,
                  containing the prefilled audio tokens.
        """
        batch_size = text.shape[0]

        enc_input_uncond = torch.zeros_like(text)
        enc_input_cond = text
        stacked_inputs = torch.stack([enc_input_uncond, enc_input_cond], dim=1)
        enc_input = stacked_inputs.view(2 * batch_size, -1)

        enc_state = EncoderInferenceState.new(self.config, enc_input_cond)
        encoder_out = self.model.encoder(enc_input, enc_state)

        dec_cross_attn_cache = self.model.decoder.precompute_cross_attn_cache(
            encoder_out
        )
        dec_state = DecoderInferenceState.new(
            self.config,
            enc_state,
            encoder_out,
            dec_cross_attn_cache,
            self.compute_dtype,
            max_generation_length=max_tokens,
        )
        prefill, prefill_steps = self._prepare_audio_prompt(audio_prompts)

        dec_output = DecoderOutput.new(batch_size, self.config, self.device)
        dec_output.prefill(prefill, prefill_steps)

        dec_step = min(prefill_steps) - 1
        if dec_step > 0:
            dec_state.prepare_step(0, dec_step)
            tokens_BxTxC = dec_output.get_tokens_at(0, dec_step).repeat_interleave(
                2, dim=0
            )
            self.model.decoder.forward(tokens_BxTxC, dec_state)

        return dec_state, dec_output

    def _decoder_step(
        self,
        tokens_Bx1xC: torch.Tensor,
        dec_state: DecoderInferenceState,
        cfg_scale: float,
        temperature: float,
        top_p: float,
        top_k: int,
        current_idx: int,
    ) -> torch.Tensor:
        """Performs a single step of the decoder inference.

        Takes the tokens from the previous step, runs them through the decoder
        (for both conditional and unconditional paths), applies classifier-free
        guidance (CFG), samples the next token using temperature, top-p, and top-k
        sampling, and applies constraints (e.g., preventing EOS in certain channels).

        Args:
            tokens_Bx1xC: The input tokens for the current step, shape [2*B, 1, C].
                         Repeated for CFG (unconditional and conditional).
            dec_state: The current state of the decoder (KV caches, etc.).
            cfg_scale: The scale factor for classifier-free guidance.
            temperature: The temperature for sampling.
            top_p: The cumulative probability threshold for top-p sampling.
            top_k: The number of top logits to consider for top-k sampling.
            current_idx: The current generation step index.

        Returns:
            torch.Tensor: The sampled next tokens for each item in the batch,
                          shape [B, C].
        """
        B = tokens_Bx1xC.shape[0] // 2

        audio_eos_value = self.config.eos_token_id
        logits_Bx1xCxV = self.model.decoder.decode_step(
            tokens_Bx1xC, dec_state, current_idx
        )

        logits_last_2BxCxV = logits_Bx1xCxV[:, -1]
        logits_last_Bx2xCxV = logits_last_2BxCxV.view(
            B, 2, *logits_last_2BxCxV.shape[1:]
        )

        uncond_logits_BxCxV = logits_last_Bx2xCxV[:, 0, :, :]  # Shape [B, C, V]
        cond_logits_BxCxV = logits_last_Bx2xCxV[:, 1, :, :]  # Shape [B, C, V]
        logits_BxCxV = cond_logits_BxCxV + cfg_scale * (
            cond_logits_BxCxV - uncond_logits_BxCxV
        )

        _, top_k_indices_BxCxk = torch.topk(logits_BxCxV, k=top_k, dim=-1)
        mask_BxCxV = torch.ones_like(logits_BxCxV, dtype=torch.bool)
        mask_BxCxV = mask_BxCxV.scatter(dim=-1, index=top_k_indices_BxCxk, value=False)
        logits_BxCxV = cond_logits_BxCxV.masked_fill(mask_BxCxV, -torch.inf)

        logits_BxCxV[:, :, audio_eos_value + 1 :] = torch.full_like(
            logits_BxCxV[:, :, audio_eos_value + 1 :],
            fill_value=-torch.inf,
        )
        logits_BxCxV[:, 1:, audio_eos_value:] = torch.full_like(
            logits_BxCxV[:, 1:, audio_eos_value:],
            fill_value=-torch.inf,
        )

        flat_logits_BCxV = logits_BxCxV.view(
            B * self.config.decoder_config.num_channels, -1
        )

        pred_BC = _sample_next_token(
            flat_logits_BCxV.float(),
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            audio_eos_value=audio_eos_value,
        )

        pred_BxC = pred_BC.view(B, self.config.decoder_config.num_channels)
        return pred_BxC

    def _generate_output(
        self, generated_codes: torch.Tensor, lengths_Bx: torch.Tensor
    ) -> list[np.ndarray]:
        """Converts generated delayed codes into audio waveforms.

        Reverts the delay pattern applied during generation, decodes the resulting
        codebook using the DAC model (if loaded), and returns a list of audio
        waveforms as NumPy arrays. If DAC is not loaded, returns the raw codebook indices.

        Args:
            generated_codes: The tensor of generated audio codes with delays,
                             shape [B, T_gen, C].
            lengths_Bx: A tensor containing the valid length of generated codes
                        (excluding padding and BOS/EOS markers) for each item
                        in the batch, shape [B].

        Returns:
            A list of NumPy arrays, where each array represents the generated audio
            waveform for one item in the batch. If DAC is not loaded, returns the
            raw, reverted codebook indices as NumPy arrays.
        """
        num_channels = self.config.decoder_config.num_channels
        batch_size = generated_codes.shape[0]
        seq_length = generated_codes.shape[1]
        delay_pattern = self.config.delay_pattern
        audio_pad_value = self.config.pad_token_id
        max_delay_pattern = max(delay_pattern)

        revert_precomp = build_revert_indices(
            B=batch_size,
            T=seq_length,
            C=num_channels,
            delay_pattern=delay_pattern,
        )

        codebook = revert_audio_delay(
            audio_BxTxC=generated_codes,
            pad_value=audio_pad_value,
            precomp=revert_precomp,
            T=seq_length,
        )[:, :-max_delay_pattern, :]

        min_valid_index = 0
        max_valid_index = 1023
        invalid_mask = (codebook < min_valid_index) | (codebook > max_valid_index)
        codebook[invalid_mask] = 0

        audios = []

        if self.load_dac:
            for i in range(batch_size):
                audio = self._decode(codebook[i, : lengths_Bx[i], :])
                audio_np = audio.cpu().numpy()
                audios.append(audio_np)
        else:
            for i in range(batch_size):
                audios.append(codebook[i, : lengths_Bx[i], :].cpu().numpy())
        return audios

    @torch.no_grad()
    @torch.inference_mode()
    def _encode(self, audio: torch.Tensor) -> torch.Tensor:
        """
        Encodes the given audio waveform into a tensor of DAC codebook indices
        """
        audio = audio.unsqueeze(0)
        audio_data = self.dac_model.preprocess(audio, DEFAULT_SAMPLE_RATE)
        _, encoded_frame, _, _, _ = self.dac_model.encode(audio_data)
        encoded_frame: torch.Tensor
        return encoded_frame.squeeze(0).transpose(0, 1)

    @torch.no_grad()
    @torch.inference_mode()
    def _decode(self, audio_codes: torch.Tensor) -> torch.Tensor:
        """
        Decodes the given frames into an output audio waveform
        """
        audio_codes = audio_codes.unsqueeze(0).transpose(1, 2)
        audio_values, _, _ = self.dac_model.quantizer.from_codes(audio_codes)
        audio_values = self.dac_model.decode(audio_values)
        audio_values: torch.Tensor
        return audio_values.squeeze()

    def load_audio(self, audio_path: str) -> torch.Tensor:
        """Loads and preprocesses an audio file for use as a prompt.

        Loads the audio file, resamples it to the target sample rate if necessary,
        preprocesses it using the DAC model's preprocessing, and encodes it into
        DAC codebook indices.

        Args:
            audio_path: Path to the audio file.

        Returns:
            torch.Tensor: The encoded audio prompt as DAC codebook indices,
                          shape [T, C].

        Raises:
            RuntimeError: If the DAC model is not loaded (`load_dac=False` during init).
            FileNotFoundError: If the audio file cannot be found.
            Exception: If there's an error during loading or processing.
        """
        if self.dac_model is None:
            raise RuntimeError(
                "DAC model is required for loading audio prompts but was not loaded."
            )
        audio, sr = torchaudio.load(audio_path, channels_first=True)  # C, T
        if sr != DEFAULT_SAMPLE_RATE:
            audio = torchaudio.functional.resample(audio, sr, DEFAULT_SAMPLE_RATE)
        # Convert to mono if stereo
        if audio.shape[0] > 1:
            audio = torch.mean(
                audio, dim=0, keepdim=True
            )  # Average channels to get mono
        return self._encode(audio.to(self.device))

    def save_audio(self, path: str, audio: np.ndarray):
        """Saves the generated audio waveform to a file.

        Uses the soundfile library to write the NumPy audio array to the specified
        path with the default sample rate.

        Args:
            path: The path where the audio file will be saved.
            audio: The audio waveform as a NumPy array.
        """
        import soundfile as sf

        sf.write(path, audio, DEFAULT_SAMPLE_RATE)

    @torch.inference_mode()
    def generate(
        self,
        text: str | list[str],
        max_tokens: int = 3072,
        cfg_scale: float = 3.0,
        temperature: float = 1.2,
        top_p: float = 0.95,
        use_torch_compile: bool = False,
        cfg_filter_top_k: int = 45,
        audio_prompt: list[str | torch.Tensor | None]
        | str
        | torch.Tensor
        | None = None,
        audio_prompt_path: list[str | torch.Tensor | None]
        | str
        | torch.Tensor
        | None = None,
        use_cfg_filter: bool | None = None,
        verbose: bool = False,
    ) -> np.ndarray | list[np.ndarray]:
        """Generates audio corresponding to the input text.

        Args:
            text: The input text prompt, or a list of text prompts for batch generation.
            max_tokens: The maximum number of audio tokens to generate per prompt.
                        Defaults to the model's configured audio length if None.
            cfg_scale: The scale factor for classifier-free guidance (CFG). Higher values
                       lead to stronger guidance towards the text prompt.
            temperature: The temperature for sampling. Higher values increase randomness.
            top_p: The cumulative probability threshold for nucleus (top-p) sampling.
            use_torch_compile: Whether to compile the generation steps using torch.compile.
                               Can significantly speed up generation after the initial
                               compilation overhead. Defaults to False.
            cfg_filter_top_k: The number of top logits to consider during CFG filtering.
                              (Note: This parameter name might be slightly misleading based
                              on the code; it's used in the `_sample_next_token` function.)
            audio_prompt: An audio prompt or list of prompts to condition the generation.
                          Can be a file path (str), a pre-loaded tensor (DAC codes), or None.
                          If a list, its length must match the batch size of the text input.
            audio_prompt_path: (Deprecated) Use `audio_prompt` instead.
            use_cfg_filter: (Deprecated) This parameter is no longer used.
            verbose: If True, prints progress information during generation, including
                     speed metrics.

        Returns:
            If a single text prompt was provided, returns a NumPy array containing the
            generated audio waveform.
            If a list of text prompts was provided, returns a list of NumPy arrays,
            each corresponding to a prompt in the input list. Returns None for a
            sequence if no audio was generated for it.
        """
        batch_size = len(text) if isinstance(text, list) else 1
        audio_eos_value = self.config.eos_token_id
        audio_pad_value = self.config.pad_token_id
        delay_pattern = self.config.delay_pattern
        max_delay_pattern = max(delay_pattern)
        delay_pattern_Cx = torch.tensor(
            delay_pattern, device=self.device, dtype=torch.long
        )
        self.model.eval()

        if audio_prompt_path:
            print("Warning: audio_prompt_path is deprecated. Use audio_prompt instead.")
            audio_prompt = audio_prompt_path
        if use_cfg_filter is not None:
            print("Warning: use_cfg_filter is deprecated.")

        if verbose:
            total_start_time = time.time()

        if use_torch_compile and not hasattr(self, "_compiled"):
            # Compilation can take about a minute.
            self._prepare_generation = torch.compile(
                self._prepare_generation, dynamic=True, fullgraph=True
            )
            self._decoder_step = torch.compile(
                self._decoder_step, fullgraph=True, mode="max-autotune"
            )
            self._compiled = True

        if isinstance(audio_prompt, list):
            audio_prompt = [
                self.load_audio(p) if isinstance(p, str) else p for p in audio_prompt
            ]
        elif isinstance(audio_prompt, str):
            audio_prompt = [self.load_audio(audio_prompt)]
        elif isinstance(audio_prompt, torch.Tensor):
            audio_prompt = [audio_prompt]
        elif audio_prompt is None:
            audio_prompt = [None] * batch_size

        assert len(audio_prompt) == batch_size, (
            "Number of audio prompts must match batch size"
        )

        if isinstance(text, list):
            text = [self._encode_text(t) for t in text]
        else:
            text = [self._encode_text(text)]
        text = self._pad_text_input(text)

        dec_state, dec_output = self._prepare_generation(
            text, audio_prompt, max_tokens=max_tokens
        )
        dec_step = min(dec_output.prefill_steps) - 1
        current_idx = torch.tensor([dec_step], device=self.device)

        eos_detected_Bx = torch.zeros(
            (batch_size,), dtype=torch.bool, device=self.device
        )
        eos_countdown_Bx = torch.full(
            (batch_size,), -1, dtype=torch.long, device=self.device
        )
        finished_step_Bx = torch.full(
            (batch_size,), -1, dtype=torch.long, device=self.device
        )

        bos_over = False

        if verbose:
            print("generate: starting generation loop")
            if use_torch_compile:
                print(
                    "generate: using use_torch_compile=True, the first step may be slow"
                )
            start_time = time.time()

        # --- Generation Loop ---
        while dec_step < max_tokens:
            if (eos_countdown_Bx == 0).all():
                break

            current_step_idx = dec_step + 1
            torch.compiler.cudagraph_mark_step_begin()
            dec_state.prepare_step(dec_step)
            tokens_Bx1xC = dec_output.get_tokens_at(dec_step).repeat_interleave(
                2, dim=0
            )  # Repeat for CFG

            pred_BxC = self._decoder_step(
                tokens_Bx1xC,
                dec_state,
                cfg_scale,
                temperature,
                top_p,
                cfg_filter_top_k,
                current_idx,
            )

            current_idx += 1

            active_mask_Bx = eos_countdown_Bx != 0
            eos_trigger_Bx = torch.zeros_like(active_mask_Bx)
            if active_mask_Bx.any():
                is_eos_token = (~eos_detected_Bx[active_mask_Bx]) & (
                    pred_BxC[active_mask_Bx, 0] == audio_eos_value
                )
                is_max_len = current_step_idx >= max_tokens - max_delay_pattern
                eos_trigger_Bx[active_mask_Bx] = is_eos_token | is_max_len
            eos_detected_Bx |= eos_trigger_Bx
            start_countdown_mask_Bx = eos_trigger_Bx & (eos_countdown_Bx < 0)
            if start_countdown_mask_Bx.any():
                eos_countdown_Bx[start_countdown_mask_Bx] = max_delay_pattern
                finished_step_Bx[start_countdown_mask_Bx] = current_step_idx

            padding_mask_Bx = eos_countdown_Bx > 0
            if padding_mask_Bx.any():
                pred_active_BxC = pred_BxC[padding_mask_Bx].clone()
                countdown_active_Bx = eos_countdown_Bx[padding_mask_Bx]
                step_after_eos_Bx = max_delay_pattern - countdown_active_Bx
                step_after_eos_Bx_ = step_after_eos_Bx.unsqueeze(1)
                delay_pattern_Cx_ = delay_pattern_Cx.unsqueeze(0)
                eos_mask_NxC = step_after_eos_Bx_ == delay_pattern_Cx_
                pad_mask_NxC = step_after_eos_Bx_ > delay_pattern_Cx_
                pred_active_BxC[eos_mask_NxC] = audio_eos_value
                pred_active_BxC[pad_mask_NxC] = audio_pad_value
                pred_BxC[padding_mask_Bx] = pred_active_BxC
                eos_countdown_Bx[padding_mask_Bx] -= 1

            # --- Update BOS flag (Original) ---
            if not bos_over:
                bos_over = all(
                    dec_step - prefill_step > max_delay_pattern
                    for prefill_step in dec_output.prefill_steps
                )

            dec_output.update_one(pred_BxC, current_step_idx, not bos_over)

            dec_step += 1

            if verbose and dec_step % 86 == 0:
                duration = time.time() - start_time
                if duration > 0:
                    print(
                        f"generate step {dec_step}: speed={86 * batch_size / duration:.3f} tokens/s, realtime factor={batch_size / duration:.3f}x"
                    )
                start_time = time.time()

        # --- Finalize and Extract Output ---
        final_step = dec_step + 1

        finished_step_Bx[finished_step_Bx == -1] = final_step - max_delay_pattern

        prefill_steps_tensor = torch.tensor(
            dec_output.prefill_steps, device=self.device
        )
        lengths_Bx = finished_step_Bx - prefill_steps_tensor
        lengths_Bx = torch.clamp(lengths_Bx, min=0)

        max_len = lengths_Bx.max().item() + max_delay_pattern
        outputs = []

        if max_len > 0:
            num_channels = self.config.decoder_config.num_channels
            audio_pad_value = self.config.pad_token_id
            generated_codes = torch.full(
                (batch_size, max_len, num_channels),
                fill_value=audio_pad_value,
                dtype=torch.long,
                device=self.device,
            )

            for i in range(batch_size):
                start_step = dec_output.prefill_steps[i]
                actual_len = lengths_Bx[i].item() + max_delay_pattern
                if actual_len > 0:
                    tokens_to_copy = dec_output.generated_tokens[
                        i, start_step : start_step + actual_len, :
                    ]
                    generated_codes[i, :actual_len, :] = tokens_to_copy

            if verbose:
                avg_steps = lengths_Bx.float().mean().item()
                total_duration = time.time() - total_start_time
                print(
                    f"generate: avg steps={avg_steps:.1f}, total duration={total_duration:.3f}s"
                )

            del dec_state

            outputs = self._generate_output(generated_codes, lengths_Bx)
        else:
            print("Warning: Nothing generated for any sequence in the batch.")
            outputs = [None] * batch_size

        return outputs if batch_size > 1 else outputs[0]