Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,479 Bytes
4aa0f34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from dataclasses import dataclass
import torch
from .config import DiaConfig
def create_attn_mask(
q_padding_mask_1d: torch.Tensor,
k_padding_mask_1d: torch.Tensor,
device: torch.device,
is_causal: bool = False,
) -> torch.Tensor:
"""
Creates the attention mask (self or cross) mimicking JAX segment ID logic.
"""
B1, Tq = q_padding_mask_1d.shape
B2, Tk = k_padding_mask_1d.shape
assert B1 == B2, "Query and key batch dimensions must match"
p_mask_q = q_padding_mask_1d.unsqueeze(2) # Shape [B, Tq, 1]
p_mask_k = k_padding_mask_1d.unsqueeze(1) # Shape [B, 1, Tk]
# Condition A: Non-padding query attends to non-padding key
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
# Condition B: Padding query attends to padding key
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
# Combine: True if padding status is compatible (both non-pad OR both pad)
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
if is_causal:
assert Tq == Tk, (
"Causal mask requires query and key sequence lengths to be equal"
)
causal_mask_2d = torch.tril(
torch.ones((Tq, Tk), dtype=torch.bool, device=device)
) # Shape [Tq, Tk]
causal_mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
return causal_mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
else:
return mask.unsqueeze(1) # Shape [B, 1, Tq, Tk]
@dataclass
class EncoderInferenceState:
"""Parameters specifically for encoder inference."""
max_seq_len: int
device: torch.device
positions: torch.Tensor
padding_mask: torch.Tensor
attn_mask: torch.Tensor
@classmethod
def new(cls, config: DiaConfig, cond_src: torch.Tensor) -> "EncoderInferenceState":
"""Creates EtorchrInferenceParams from DiaConfig and a device."""
device = cond_src.device
positions = (
torch.arange(config.data.text_length, device=device)
.to(torch.long)
.unsqueeze(0)
.expand(2, -1)
)
padding_mask = (cond_src != config.data.text_pad_value).to(device).expand(2, -1)
attn_mask = create_attn_mask(
padding_mask, padding_mask, device, is_causal=False
)
return cls(
max_seq_len=config.data.text_length,
device=device,
positions=positions,
padding_mask=padding_mask,
attn_mask=attn_mask,
)
class KVCache:
def __init__(
self,
num_heads: int,
max_len: int,
head_dim: int,
dtype: torch.dtype,
device: torch.device,
k: torch.Tensor | None = None,
v: torch.Tensor | None = None,
):
self.k = (
torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device)
if k is None
else k
)
self.v = (
torch.zeros((2, num_heads, max_len, head_dim), dtype=dtype, device=device)
if v is None
else v
)
self.current_idx = torch.tensor(0)
@classmethod
def from_kv(cls, k: torch.Tensor, v: torch.Tensor) -> "KVCache":
return cls(
num_heads=k.shape[1],
max_len=k.shape[2],
head_dim=k.shape[3],
dtype=k.dtype,
device=k.device,
k=k,
v=v,
)
def update(
self, k: torch.Tensor, v: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
self.k[:, :, self.current_idx : self.current_idx + 1, :] = k
self.v[:, :, self.current_idx : self.current_idx + 1, :] = v
self.current_idx += 1
return self.k[:, :, : self.current_idx, :], self.v[:, :, : self.current_idx, :]
def prefill(
self, k: torch.Tensor, v: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
prefill_len = k.shape[2]
self.k[:, :, :prefill_len, :] = k
self.v[:, :, :prefill_len, :] = v
self.current_idx = prefill_len - 1
@dataclass
class DecoderInferenceState:
"""Parameters specifically for decoder inference."""
device: torch.device
dtype: torch.dtype
enc_out: torch.Tensor
enc_positions: torch.Tensor
dec_positions: torch.Tensor
dec_cross_attn_mask: torch.Tensor
self_attn_cache: list[KVCache]
cross_attn_cache: list[KVCache]
@classmethod
def new(
cls,
config: DiaConfig,
enc_state: EncoderInferenceState,
enc_out: torch.Tensor,
dec_cross_attn_cache: list[KVCache],
compute_dtype: torch.dtype,
) -> "DecoderInferenceState":
"""Creates DecoderInferenceParams from DiaConfig and a device."""
device = enc_out.device
max_audio_len = config.data.audio_length
dec_positions = torch.full(
(2, 1), fill_value=0, dtype=torch.long, device=device
)
tgt_padding_mask = torch.ones((2, 1), dtype=torch.bool, device=device)
dec_cross_attn_mask = create_attn_mask(
tgt_padding_mask, enc_state.padding_mask, device, is_causal=False
)
self_attn_cache = [
KVCache(
config.model.decoder.kv_heads,
max_audio_len,
config.model.decoder.gqa_head_dim,
compute_dtype,
device,
)
for _ in range(config.model.decoder.n_layer)
]
return cls(
device=device,
dtype=compute_dtype,
enc_out=enc_out,
enc_positions=enc_state.positions,
dec_positions=dec_positions,
dec_cross_attn_mask=dec_cross_attn_mask,
self_attn_cache=self_attn_cache,
cross_attn_cache=dec_cross_attn_cache,
)
def prepare_step(self, step_from: int, step_to: int | None = None) -> None:
if step_to is None:
step_to = step_from + 1
self.dec_positions = (
torch.arange(step_from, step_to, device=self.device)
.unsqueeze(0)
.expand(2, -1)
)
@dataclass
class DecoderOutput:
generated_tokens: torch.Tensor
prefill_step: int
@classmethod
def new(cls, config: DiaConfig, device: torch.device) -> "DecoderOutput":
max_audio_len = config.data.audio_length
return cls(
generated_tokens=torch.full(
(max_audio_len, config.data.channels),
fill_value=-1,
dtype=torch.int,
device=device,
),
prefill_step=0,
)
def get_tokens_at(self, step_from: int, step_to: int | None = None) -> torch.Tensor:
if step_to is None:
step_to = step_from + 1
return self.generated_tokens[step_from:step_to, :]
def update_one(self, dec_out: torch.Tensor, step: int, apply_mask: bool = False):
if apply_mask:
mask = self.generated_tokens[step : step + 1, :] == -1
self.generated_tokens[step : step + 1, :] = torch.where(
mask, dec_out, self.generated_tokens[step : step + 1, :]
)
else:
self.generated_tokens[step : step + 1, :] = dec_out
def prefill(self, dec_out: torch.Tensor, prefill_step: int):
length = dec_out.shape[0]
self.generated_tokens[0:length, :] = dec_out
self.prefill_step = prefill_step
|