Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,66 +2,72 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
from sklearn.pipeline import Pipeline
|
5 |
-
from sklearn.preprocessing import StandardScaler
|
6 |
-
from sklearn.compose import ColumnTransformer
|
7 |
from sklearn.neighbors import KNeighborsClassifier
|
8 |
-
from sklearn.metrics import
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
penguins = pd.read_csv('penguins_lter.csv')
|
13 |
-
penguins = penguins.dropna() # Handle missing values
|
14 |
-
penguins.drop_duplicates(inplace=True) # Remove duplicates
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
transformers=[
|
32 |
-
('num', numerical_transformer, numerical_features),
|
33 |
-
('cat', categorical_transformer, categorical_features)
|
34 |
-
])
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
st.
|
42 |
-
|
43 |
-
# 6.1 Sidebar for User Input
|
44 |
-
st.sidebar.header('Input Features')
|
45 |
-
island = st.sidebar.selectbox('Island', penguins['Island'].unique())
|
46 |
-
culmen_length = st.sidebar.slider('Culmen Length (mm)', float(penguins['Culmen Length (mm)'].min()), float(penguins['Culmen Length (mm)'].max()))
|
47 |
-
culmen_depth = st.sidebar.slider('Culmen Depth (mm)', float(penguins['Culmen Depth (mm)'].min()), float(penguins['Culmen Depth (mm)'].max()))
|
48 |
-
flipper_length = st.sidebar.slider('Flipper Length (mm)', float(penguins['Flipper Length (mm)'].min()), float(penguins['Flipper Length (mm)'].max()))
|
49 |
-
body_mass = st.sidebar.slider('Body Mass (g)', float(penguins['Body Mass (g)'].min()), float(penguins['Body Mass (g)'].max()))
|
50 |
-
sex = st.sidebar.selectbox('Sex', penguins['Sex'].unique())
|
51 |
-
|
52 |
-
# 6.2 Create Input Dataframe
|
53 |
-
input_data = pd.DataFrame({
|
54 |
-
'Island': [island],
|
55 |
-
'Culmen Length (mm)': [culmen_length],
|
56 |
-
'Culmen Depth (mm)': [culmen_depth],
|
57 |
-
'Flipper Length (mm)': [flipper_length],
|
58 |
-
'Body Mass (g)': [body_mass],
|
59 |
-
'Sex': [sex]
|
60 |
-
})
|
61 |
-
|
62 |
-
# 6.3 Make Prediction
|
63 |
-
prediction = pipeline.predict(input_data)
|
64 |
-
|
65 |
-
# 6.4 Display Prediction
|
66 |
-
st.subheader('Prediction')
|
67 |
-
st.write(f"Predicted Penguin Species: {prediction[0]}")
|
|
|
2 |
import pandas as pd
|
3 |
from sklearn.model_selection import train_test_split
|
4 |
from sklearn.pipeline import Pipeline
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
|
|
6 |
from sklearn.neighbors import KNeighborsClassifier
|
7 |
+
from sklearn.metrics import classification_report
|
8 |
|
9 |
+
# Load your data (replace with your actual file path)
|
10 |
+
df = pd.read_csv('penguins_lter.csv')
|
|
|
|
|
|
|
11 |
|
12 |
+
# Data preprocessing (same as in your previous code)
|
13 |
+
numeric_cols = df.select_dtypes(include=['number']).columns
|
14 |
+
for col in numeric_cols:
|
15 |
+
df[col].fillna(df[col].mean(), inplace=True)
|
16 |
|
17 |
+
categorical_cols = df.select_dtypes(exclude=['number']).columns
|
18 |
+
for col in categorical_cols:
|
19 |
+
df[col].fillna(df[col].mode()[0], inplace=True)
|
20 |
+
|
21 |
+
# Feature Engineering and Model Training (same as in your previous code)
|
22 |
+
X = df.drop('Species', axis=1)
|
23 |
+
y = df['Species']
|
24 |
+
X = pd.get_dummies(X, drop_first=True)
|
25 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
26 |
|
27 |
+
pipeline = Pipeline([
|
28 |
+
('scaler', StandardScaler()),
|
29 |
+
('knn', KNeighborsClassifier(n_neighbors=5))
|
30 |
+
])
|
31 |
+
pipeline.fit(X_train, y_train)
|
32 |
+
y_pred = pipeline.predict(X_test)
|
33 |
+
report = classification_report(y_test, y_pred, output_dict=True)
|
34 |
|
35 |
+
# Streamlit app
|
36 |
+
st.title("Penguin Species Classification")
|
37 |
|
38 |
+
st.write("This app predicts the species of a penguin based on its features.")
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Display the classification report
|
41 |
+
st.subheader("Classification Report")
|
42 |
+
st.write(pd.DataFrame(report).transpose())
|
43 |
+
|
44 |
+
|
45 |
+
# Add input fields for user input (example)
|
46 |
+
st.sidebar.header("Penguin Features")
|
47 |
+
|
48 |
+
# Example input fields (replace with your actual features)
|
49 |
+
bill_length_mm = st.sidebar.number_input("Bill Length (mm)", min_value=0.0, value=40.0)
|
50 |
+
bill_depth_mm = st.sidebar.number_input("Bill Depth (mm)", min_value=0.0, value=15.0)
|
51 |
+
# ... Add more input fields for other features ...
|
52 |
+
|
53 |
+
#Create a dictionary to store the user inputs
|
54 |
+
user_input_dict = {
|
55 |
+
'bill_length_mm': bill_length_mm,
|
56 |
+
'bill_depth_mm': bill_depth_mm,
|
57 |
+
# ... Add other features here
|
58 |
+
}
|
59 |
+
|
60 |
+
# Create a dataframe for prediction
|
61 |
+
user_input_df = pd.DataFrame([user_input_dict])
|
62 |
+
user_input_df = pd.get_dummies(user_input_df, drop_first=True) # Apply the same one-hot encoding
|
63 |
+
|
64 |
+
|
65 |
+
if st.sidebar.button("Predict"):
|
66 |
+
# Align the columns of user_input_df and X_train
|
67 |
+
missing_cols = set(X_train.columns) - set(user_input_df.columns)
|
68 |
+
for c in missing_cols:
|
69 |
+
user_input_df[c] = 0 # Add missing columns with value 0
|
70 |
+
user_input_df = user_input_df[X_train.columns] # Reorder the columns
|
71 |
|
72 |
+
prediction = pipeline.predict(user_input_df)
|
73 |
+
st.write(f"Predicted Species: {prediction[0]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|