Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from sklearn.model_selection import train_test_split
|
4 |
-
from sklearn.pipeline import Pipeline
|
5 |
-
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
6 |
-
from sklearn.compose import ColumnTransformer
|
7 |
-
from sklearn.neighbors import KNeighborsClassifier
|
8 |
-
from sklearn.metrics import accuracy_score
|
9 |
-
|
10 |
-
# Load your data (replace with your actual data loading)
|
11 |
-
# Assuming penguins.csv is in the same directory as your Streamlit app
|
12 |
-
try:
|
13 |
-
penguins = pd.read_csv('penguins_lter.csv')
|
14 |
-
except FileNotFoundError:
|
15 |
-
st.error("Error: penguins_lter.csv not found. Please make sure the file is in the same directory as the app.")
|
16 |
-
st.stop()
|
17 |
-
|
18 |
-
# Preprocessing steps (same as your original code)
|
19 |
-
penguins = penguins.dropna()
|
20 |
-
penguins.drop_duplicates(inplace=True)
|
21 |
-
|
22 |
-
|
23 |
-
# Streamlit app
|
24 |
-
st.title('Penguin Species Prediction')
|
25 |
-
|
26 |
-
# Sidebar for user input
|
27 |
-
st.sidebar.header('Input Features')
|
28 |
-
|
29 |
-
island = st.sidebar.selectbox('Island', penguins['Island'].unique())
|
30 |
-
culmen_length = st.sidebar.slider('Culmen Length (mm)', float(penguins['Culmen Length (mm)'].min()), float(penguins['Culmen Length (mm)'].max()), float(penguins['Culmen Length (mm)'].mean()))
|
31 |
-
culmen_depth = st.sidebar.slider('Culmen Depth (mm)', float(penguins['Culmen Depth (mm)'].min()), float(penguins['Culmen Depth (mm)'].max()), float(penguins['Culmen Depth (mm)'].mean()))
|
32 |
-
flipper_length = st.sidebar.slider('Flipper Length (mm)', float(penguins['Flipper Length (mm)'].min()), float(penguins['Flipper Length (mm)'].max()), float(penguins['Flipper Length (mm)'].mean()))
|
33 |
-
body_mass = st.sidebar.slider('Body Mass (g)', float(penguins['Body Mass (g)'].min()), float(penguins['Body Mass (g)'].max()), float(penguins['Body Mass (g)'].mean()))
|
34 |
-
sex = st.sidebar.selectbox('Sex', penguins['Sex'].unique())
|
35 |
-
|
36 |
-
# Create input DataFrame
|
37 |
-
input_data = pd.DataFrame({
|
38 |
-
'Island': [island],
|
39 |
-
'Culmen Length (mm)': [culmen_length],
|
40 |
-
'Culmen Depth (mm)': [culmen_depth],
|
41 |
-
'Flipper Length (mm)': [flipper_length],
|
42 |
-
'Body Mass (g)': [body_mass],
|
43 |
-
'Sex': [sex]
|
44 |
-
})
|
45 |
-
|
46 |
-
# Prepare the model (same as before, including your pipeline)
|
47 |
-
X = penguins.drop('Species', axis=1)
|
48 |
-
y = penguins['Species']
|
49 |
-
|
50 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
51 |
-
|
52 |
-
numerical_features = ['Culmen Length (mm)', 'Culmen Depth (mm)', 'Flipper Length (mm)', 'Body Mass (g)']
|
53 |
-
categorical_features = ['Island', 'Sex']
|
54 |
-
|
55 |
-
numerical_transformer = Pipeline(steps=[('scaler', StandardScaler())])
|
56 |
-
categorical_transformer = Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))])
|
57 |
-
|
58 |
-
preprocessor = ColumnTransformer(
|
59 |
-
transformers=[
|
60 |
-
('num', numerical_transformer, numerical_features),
|
61 |
-
('cat', categorical_transformer, categorical_features)
|
62 |
-
])
|
63 |
-
|
64 |
-
pipeline = Pipeline(steps=[('preprocessor', preprocessor), ('classifier', KNeighborsClassifier())])
|
65 |
-
pipeline.fit(X_train, y_train)
|
66 |
-
|
67 |
-
# Make prediction
|
68 |
-
prediction = pipeline.predict(input_data)
|
69 |
-
|
70 |
-
# Display prediction
|
71 |
-
st.subheader('Prediction')
|
72 |
-
st.write(f"Predicted Penguin Species: {prediction[0]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|