Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,16 @@ from sklearn.preprocessing import StandardScaler
|
|
6 |
from sklearn.neighbors import KNeighborsClassifier
|
7 |
from sklearn.metrics import classification_report
|
8 |
|
9 |
-
# Load your data (replace with your actual
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
13 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
14 |
for col in numeric_cols:
|
15 |
df[col].fillna(df[col].mean(), inplace=True)
|
@@ -18,56 +24,39 @@ categorical_cols = df.select_dtypes(exclude=['number']).columns
|
|
18 |
for col in categorical_cols:
|
19 |
df[col].fillna(df[col].mode()[0], inplace=True)
|
20 |
|
21 |
-
|
|
|
|
|
|
|
22 |
X = df.drop('Species', axis=1)
|
23 |
y = df['Species']
|
|
|
|
|
24 |
X = pd.get_dummies(X, drop_first=True)
|
|
|
|
|
25 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
26 |
|
|
|
27 |
pipeline = Pipeline([
|
28 |
('scaler', StandardScaler()),
|
29 |
('knn', KNeighborsClassifier(n_neighbors=5))
|
30 |
])
|
|
|
|
|
31 |
pipeline.fit(X_train, y_train)
|
|
|
|
|
32 |
y_pred = pipeline.predict(X_test)
|
33 |
-
|
34 |
|
35 |
# Streamlit app
|
36 |
st.title("Penguin Species Classification")
|
37 |
|
38 |
-
st.write("This app predicts the species of a penguin based on its
|
39 |
|
40 |
-
# Display
|
41 |
st.subheader("Classification Report")
|
42 |
-
st.
|
43 |
-
|
44 |
-
|
45 |
-
# Add input fields for user input (example)
|
46 |
-
st.sidebar.header("Penguin Features")
|
47 |
-
|
48 |
-
# Example input fields (replace with your actual features)
|
49 |
-
bill_length_mm = st.sidebar.number_input("Bill Length (mm)", min_value=0.0, value=40.0)
|
50 |
-
bill_depth_mm = st.sidebar.number_input("Bill Depth (mm)", min_value=0.0, value=15.0)
|
51 |
-
# ... Add more input fields for other features ...
|
52 |
-
|
53 |
-
#Create a dictionary to store the user inputs
|
54 |
-
user_input_dict = {
|
55 |
-
'bill_length_mm': bill_length_mm,
|
56 |
-
'bill_depth_mm': bill_depth_mm,
|
57 |
-
# ... Add other features here
|
58 |
-
}
|
59 |
-
|
60 |
-
# Create a dataframe for prediction
|
61 |
-
user_input_df = pd.DataFrame([user_input_dict])
|
62 |
-
user_input_df = pd.get_dummies(user_input_df, drop_first=True) # Apply the same one-hot encoding
|
63 |
-
|
64 |
-
|
65 |
-
if st.sidebar.button("Predict"):
|
66 |
-
# Align the columns of user_input_df and X_train
|
67 |
-
missing_cols = set(X_train.columns) - set(user_input_df.columns)
|
68 |
-
for c in missing_cols:
|
69 |
-
user_input_df[c] = 0 # Add missing columns with value 0
|
70 |
-
user_input_df = user_input_df[X_train.columns] # Reorder the columns
|
71 |
|
72 |
-
|
73 |
-
st.write(f"Predicted Species: {prediction[0]}")
|
|
|
6 |
from sklearn.neighbors import KNeighborsClassifier
|
7 |
from sklearn.metrics import classification_report
|
8 |
|
9 |
+
# Load your data (replace with your actual data loading)
|
10 |
+
# Assuming you have a CSV file named 'penguins_lter.csv' in your working directory
|
11 |
+
try:
|
12 |
+
df = pd.read_csv('penguins_lter.csv')
|
13 |
+
except FileNotFoundError:
|
14 |
+
st.error("Error: 'penguins_lter.csv' not found. Please upload the file or adjust the path.")
|
15 |
+
st.stop()
|
16 |
|
17 |
+
|
18 |
+
# Data preprocessing (handle missing values)
|
19 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
20 |
for col in numeric_cols:
|
21 |
df[col].fillna(df[col].mean(), inplace=True)
|
|
|
24 |
for col in categorical_cols:
|
25 |
df[col].fillna(df[col].mode()[0], inplace=True)
|
26 |
|
27 |
+
|
28 |
+
# Model training and prediction (same as your original code)
|
29 |
+
|
30 |
+
# Assuming 'Species' is your target variable
|
31 |
X = df.drop('Species', axis=1)
|
32 |
y = df['Species']
|
33 |
+
|
34 |
+
# Convert categorical features to numerical using one-hot encoding
|
35 |
X = pd.get_dummies(X, drop_first=True)
|
36 |
+
|
37 |
+
# Split data into training and testing sets
|
38 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
39 |
|
40 |
+
# Create a pipeline
|
41 |
pipeline = Pipeline([
|
42 |
('scaler', StandardScaler()),
|
43 |
('knn', KNeighborsClassifier(n_neighbors=5))
|
44 |
])
|
45 |
+
|
46 |
+
# Train the pipeline
|
47 |
pipeline.fit(X_train, y_train)
|
48 |
+
|
49 |
+
# Make predictions
|
50 |
y_pred = pipeline.predict(X_test)
|
51 |
+
|
52 |
|
53 |
# Streamlit app
|
54 |
st.title("Penguin Species Classification")
|
55 |
|
56 |
+
st.write("This app predicts the species of a penguin based on its physical characteristics.")
|
57 |
|
58 |
+
# Display classification report
|
59 |
st.subheader("Classification Report")
|
60 |
+
st.text(classification_report(y_test, y_pred))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
st.dataframe(df.head())
|
|