File size: 4,768 Bytes
d444fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import os

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
ROOT_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

import time
import json
import numpy as np
import torch
from torch.utils.data import DataLoader

from lib.options import BaseOptions
from lib.mesh_util import *
from lib.sample_util import *
from lib.train_util import *
from lib.model import *

from PIL import Image
import torchvision.transforms as transforms

import trimesh
from datetime import datetime

# get options
opt = BaseOptions().parse()

class Evaluator:
    def __init__(self, opt, projection_mode='orthogonal'):
        self.opt = opt
        self.load_size = self.opt.loadSize
        self.to_tensor = transforms.Compose([
            transforms.Resize(self.load_size),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
        # set cuda
        cuda = torch.device('cuda:%d' % opt.gpu_id) if torch.cuda.is_available() else torch.device('cpu')
        print("CUDDAAAAA ???",  torch.cuda.get_device_name(0) if torch.cuda.is_available()  else "NO ONLY CPU")
  
        # create net
        netG = HGPIFuNet(opt, projection_mode).to(device=cuda)
        print('Using Network: ', netG.name)

        if opt.load_netG_checkpoint_path:
            netG.load_state_dict(torch.load(opt.load_netG_checkpoint_path, map_location=cuda))

        if opt.load_netC_checkpoint_path is not None:
            print('loading for net C ...', opt.load_netC_checkpoint_path)
            netC = ResBlkPIFuNet(opt).to(device=cuda)
            netC.load_state_dict(torch.load(opt.load_netC_checkpoint_path, map_location=cuda))
        else:
            netC = None

        os.makedirs(opt.results_path, exist_ok=True)
        os.makedirs('%s/%s' % (opt.results_path, opt.name), exist_ok=True)

        opt_log = os.path.join(opt.results_path, opt.name, 'opt.txt')
        with open(opt_log, 'w') as outfile:
            outfile.write(json.dumps(vars(opt), indent=2))

        self.cuda = cuda
        self.netG = netG
        self.netC = netC

    def load_image(self, image_path, mask_path):
        # Name
        img_name = os.path.splitext(os.path.basename(image_path))[0]
        # Calib
        B_MIN = np.array([-1, -1, -1])
        B_MAX = np.array([1, 1, 1])
        projection_matrix = np.identity(4)
        projection_matrix[1, 1] = -1
        calib = torch.Tensor(projection_matrix).float()
        # Mask
        mask = Image.open(mask_path).convert('L')
        mask = transforms.Resize(self.load_size)(mask)
        mask = transforms.ToTensor()(mask).float()
        # image
        image = Image.open(image_path).convert('RGB')
        image = self.to_tensor(image)
        image = mask.expand_as(image) * image
        return {
            'name': img_name,
            'img': image.unsqueeze(0),
            'calib': calib.unsqueeze(0),
            'mask': mask.unsqueeze(0),
            'b_min': B_MIN,
            'b_max': B_MAX,
        }

    def eval(self, data, use_octree=False):
        '''
        Evaluate a data point
        :param data: a dict containing at least ['name'], ['image'], ['calib'], ['b_min'] and ['b_max'] tensors.
        :return:
        '''
        opt = self.opt
        with torch.no_grad():
            self.netG.eval()
            if self.netC:
                self.netC.eval()
            save_path = '%s/%s/result_%s.obj' % (opt.results_path, opt.name, data['name'])
            if self.netC:
                gen_mesh_color(opt, self.netG, self.netC, self.cuda, data, save_path, use_octree=use_octree)
            else:
                gen_mesh(opt, self.netG, self.cuda, data, save_path, use_octree=use_octree)


if __name__ == '__main__':
    evaluator = Evaluator(opt)

    results_path = opt.results_path
    name = opt.name
    test_image_path = opt.img_path
    test_mask_path = test_image_path[:-4] +'_mask.png'
    test_img_name = os.path.splitext(os.path.basename(test_image_path))[0]
    print("test_image: ", test_image_path)
    print("test_mask: ", test_mask_path)

    try:
        time = datetime.now()
        print("evaluating" , time)
        data = evaluator.load_image(test_image_path, test_mask_path)
        evaluator.eval(data, False)
        print("done evaluating" , datetime.now() - time)
    except Exception as e:
        print("error:", e.args)

    try:
        mesh = trimesh.load(f'{results_path}/{name}/result_{test_img_name}.obj')
        mesh.apply_transform([[1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, -1, 0],
        [0, 0, 0, 1]])
        mesh.export(file_obj=f'{results_path}/{name}/result_{test_img_name}.glb')
    except Exception as e:
        print("error generating MESH", e)