File size: 3,357 Bytes
d444fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import io
import os
import torch
from skimage.io import imread
import numpy as np
import cv2
from tqdm import tqdm_notebook as tqdm
import base64
from IPython.display import HTML

# Util function for loading meshes
from pytorch3d.io import load_objs_as_meshes

from IPython.display import HTML
from base64 import b64encode

# Data structures and functions for rendering
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
    look_at_view_transform,
    OpenGLOrthographicCameras, 
    PointLights, 
    DirectionalLights, 
    Materials, 
    RasterizationSettings, 
    MeshRenderer, 
    MeshRasterizer,  
    SoftPhongShader,
    HardPhongShader,
    TexturesVertex
)

def set_renderer():
    # Setup
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    # Initialize an OpenGL perspective camera.
    R, T = look_at_view_transform(2.0, 0, 180) 
    cameras = OpenGLOrthographicCameras(device=device, R=R, T=T)

    raster_settings = RasterizationSettings(
        image_size=512, 
        blur_radius=0.0, 
        faces_per_pixel=1, 
        bin_size = None, 
        max_faces_per_bin = None
    )

    lights = PointLights(device=device, location=((2.0, 2.0, 2.0),))

    renderer = MeshRenderer(
        rasterizer=MeshRasterizer(
            cameras=cameras, 
            raster_settings=raster_settings
        ),
        shader=HardPhongShader(
            device=device, 
            cameras=cameras,
            lights=lights
        )
    )
    return renderer

def get_verts_rgb_colors(obj_path):
  rgb_colors = []

  f = open(obj_path)
  lines = f.readlines()
  for line in lines:
    ls = line.split(' ')
    if len(ls) == 7:
      rgb_colors.append(ls[-3:])

  return np.array(rgb_colors, dtype='float32')[None, :, :]

def generate_video_from_obj(obj_path, video_path, renderer):
    # Setup
    device = torch.device("cuda:0")
    torch.cuda.set_device(device)

    # Load obj file
    verts_rgb_colors = get_verts_rgb_colors(obj_path)
    verts_rgb_colors = torch.from_numpy(verts_rgb_colors).to(device)
    textures = TexturesVertex(verts_features=verts_rgb_colors)
    wo_textures = TexturesVertex(verts_features=torch.ones_like(verts_rgb_colors)*0.75)

    # Load obj
    mesh = load_objs_as_meshes([obj_path], device=device)

    # Set mesh
    vers = mesh._verts_list
    faces = mesh._faces_list
    mesh_w_tex = Meshes(vers, faces, textures)
    mesh_wo_tex = Meshes(vers, faces, wo_textures)

    # create VideoWriter
    fourcc = cv2. VideoWriter_fourcc(*'MP4V')
    out = cv2.VideoWriter(video_path, fourcc, 20.0, (1024,512))

    for i in tqdm(range(90)):
        R, T = look_at_view_transform(1.8, 0, i*4, device=device)
        images_w_tex = renderer(mesh_w_tex, R=R, T=T)
        images_w_tex = np.clip(images_w_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255
        images_wo_tex = renderer(mesh_wo_tex, R=R, T=T)
        images_wo_tex = np.clip(images_wo_tex[0, ..., :3].cpu().numpy(), 0.0, 1.0)[:, :, ::-1] * 255
        image = np.concatenate([images_w_tex, images_wo_tex], axis=1)
        out.write(image.astype('uint8'))
    out.release()

def video(path):
    mp4 = open(path,'rb').read()
    data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
    return HTML('<video width=500 controls loop> <source src="%s" type="video/mp4"></video>' % data_url)