File size: 2,414 Bytes
d444fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import torch.nn as nn
import torch.nn.functional as F


class SurfaceClassifier(nn.Module):
    def __init__(self, filter_channels, num_views=1, no_residual=True, last_op=None):
        super(SurfaceClassifier, self).__init__()

        self.filters = []
        self.num_views = num_views
        self.no_residual = no_residual
        filter_channels = filter_channels
        self.last_op = last_op

        if self.no_residual:
            for l in range(0, len(filter_channels) - 1):
                self.filters.append(nn.Conv1d(
                    filter_channels[l],
                    filter_channels[l + 1],
                    1))
                self.add_module("conv%d" % l, self.filters[l])
        else:
            for l in range(0, len(filter_channels) - 1):
                if 0 != l:
                    self.filters.append(
                        nn.Conv1d(
                            filter_channels[l] + filter_channels[0],
                            filter_channels[l + 1],
                            1))
                else:
                    self.filters.append(nn.Conv1d(
                        filter_channels[l],
                        filter_channels[l + 1],
                        1))

                self.add_module("conv%d" % l, self.filters[l])

    def forward(self, feature):
        '''

        :param feature: list of [BxC_inxHxW] tensors of image features
        :param xy: [Bx3xN] tensor of (x,y) coodinates in the image plane
        :return: [BxC_outxN] tensor of features extracted at the coordinates
        '''

        y = feature
        tmpy = feature
        for i, f in enumerate(self.filters):
            if self.no_residual:
                y = self._modules['conv' + str(i)](y)
            else:
                y = self._modules['conv' + str(i)](
                    y if i == 0
                    else torch.cat([y, tmpy], 1)
                )
            if i != len(self.filters) - 1:
                y = F.leaky_relu(y)

            if self.num_views > 1 and i == len(self.filters) // 2:
                y = y.view(
                    -1, self.num_views, y.shape[1], y.shape[2]
                ).mean(dim=1)
                tmpy = feature.view(
                    -1, self.num_views, feature.shape[1], feature.shape[2]
                ).mean(dim=1)

        if self.last_op:
            y = self.last_op(y)

        return y