Spaces:
Runtime error
Runtime error
import cv2 | |
import gradio as gr | |
import numpy as np | |
import onnxruntime | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
# Get x_scale_factor & y_scale_factor to resize image | |
def get_scale_factor(im_h, im_w, ref_size=512): | |
if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: | |
if im_w >= im_h: | |
im_rh = ref_size | |
im_rw = int(im_w / im_h * ref_size) | |
elif im_w < im_h: | |
im_rw = ref_size | |
im_rh = int(im_h / im_w * ref_size) | |
else: | |
im_rh = im_h | |
im_rw = im_w | |
im_rw = im_rw - im_rw % 32 | |
im_rh = im_rh - im_rh % 32 | |
x_scale_factor = im_rw / im_w | |
y_scale_factor = im_rh / im_h | |
return x_scale_factor, y_scale_factor | |
MODEL_PATH = hf_hub_download('nateraw/background-remover-files', 'modnet.onnx', repo_type='dataset') | |
def main(image_path): | |
# read image | |
im = cv2.imread(image_path) | |
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
# unify image channels to 3 | |
if len(im.shape) == 2: | |
im = im[:, :, None] | |
if im.shape[2] == 1: | |
im = np.repeat(im, 3, axis=2) | |
elif im.shape[2] == 4: | |
im = im[:, :, 0:3] | |
# normalize values to scale it between -1 to 1 | |
im = (im - 127.5) / 127.5 | |
im_h, im_w, im_c = im.shape | |
x, y = get_scale_factor(im_h, im_w) | |
# resize image | |
im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA) | |
# prepare input shape | |
im = np.transpose(im) | |
im = np.swapaxes(im, 1, 2) | |
im = np.expand_dims(im, axis=0).astype('float32') | |
# Initialize session and get prediction | |
session = onnxruntime.InferenceSession(MODEL_PATH, None) | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
result = session.run([output_name], {input_name: im}) | |
# refine matte | |
matte = (np.squeeze(result[0]) * 255).astype('uint8') | |
matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA) | |
# HACK - Could probably just convert this to PIL instead of writing | |
cv2.imwrite('out.png', matte) | |
image = Image.open(image_path) | |
matte = Image.open('out.png') | |
# obtain predicted foreground | |
image = np.asarray(image) | |
if len(image.shape) == 2: | |
image = image[:, :, None] | |
if image.shape[2] == 1: | |
image = np.repeat(image, 3, axis=2) | |
elif image.shape[2] == 4: | |
image = image[:, :, 0:3] | |
matte = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) / 255 | |
foreground = image * matte + np.full(image.shape, 255) * (1 - matte) | |
return Image.fromarray(foreground.astype(np.uint8)) | |
title = "MODNet Background Remover" | |
description = "Gradio demo for MODNet, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<div style='text-align: center;'> <a href='https://github.com/ZHKKKe/MODNet' target='_blank'>Github Repo</a> | <a href='https://arxiv.org/abs/2011.11961' target='_blank'>MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition</a> </div>" | |
example_img = hf_hub_download( | |
'nateraw/background-remover-files', | |
'twitter_profile_pic.jpeg', | |
repo_type='dataset', | |
) | |
interface = gr.Interface( | |
fn=main, | |
inputs=gr.inputs.Image(type='filepath'), | |
outputs='image', | |
examples=[[example_img]], | |
title=title, | |
description=description, | |
article=article, | |
) | |
if __name__ == '__main__': | |
interface.launch(debug=True) | |