yourusername commited on
Commit
f63e6a9
β€’
0 Parent(s):

:beers: cheers

Browse files
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.github/workflows/check_size.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Check file size
2
+
3
+ on:
4
+ pull_request:
5
+ branches: [main]
6
+
7
+ # to run this workflow manually from the Actions tab
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ sync-to-hub:
12
+ runs-on: ubuntu-latest
13
+ steps:
14
+ - name: Check large files
15
+ uses: ActionsDesk/[email protected]
16
+ with:
17
+ filesizelimit: 10485760 # = 10MB, so we can sync to HF spaces
.github/workflows/sync_to_hub.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+
3
+ on:
4
+ push:
5
+ branches: [main]
6
+
7
+ # to run this workflow manually from the Actions tab
8
+ workflow_dispatch:
9
+
10
+ jobs:
11
+ sync-to-hub:
12
+ runs-on: ubuntu-latest
13
+ steps:
14
+ - uses: actions/checkout@v2
15
+ with:
16
+ fetch-depth: 0
17
+ - name: Push to hub
18
+ env:
19
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
20
+ run: git push https://nateraw:[email protected]/spaces/nateraw/background-remover main --force
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: background-remover
3
+ emoji: πŸ€—
4
+ colorFrom: blue
5
+ colorTo: red
6
+ sdk: gradio
7
+ app_file: app.py
8
+ pinned: false
9
+ ---
10
+
11
+ # background-remover
12
+
13
+ [![Generic badge](https://img.shields.io/badge/πŸ€—-Open%20In%20Spaces-blue.svg)](https://huggingface.co/spaces/nateraw/background-remover)
14
+
15
+ A Gradio app to remove the background from an image
16
+
17
+ ---
18
+
19
+ Autogenerated using [this template](https://github.com/nateraw/spaces-template)
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+ import numpy as np
4
+ import onnxruntime
5
+ from huggingface_hub import hf_hub_download
6
+ from PIL import Image
7
+
8
+
9
+ # Get x_scale_factor & y_scale_factor to resize image
10
+ def get_scale_factor(im_h, im_w, ref_size=512):
11
+
12
+ if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
13
+ if im_w >= im_h:
14
+ im_rh = ref_size
15
+ im_rw = int(im_w / im_h * ref_size)
16
+ elif im_w < im_h:
17
+ im_rw = ref_size
18
+ im_rh = int(im_h / im_w * ref_size)
19
+ else:
20
+ im_rh = im_h
21
+ im_rw = im_w
22
+
23
+ im_rw = im_rw - im_rw % 32
24
+ im_rh = im_rh - im_rh % 32
25
+
26
+ x_scale_factor = im_rw / im_w
27
+ y_scale_factor = im_rh / im_h
28
+
29
+ return x_scale_factor, y_scale_factor
30
+
31
+
32
+ MODEL_PATH = hf_hub_download('nateraw/background-remover-files', 'modnet.onnx', repo_type='dataset')
33
+
34
+
35
+ def main(image_path):
36
+
37
+ # read image
38
+ im = cv2.imread(image_path)
39
+ im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
40
+
41
+ # unify image channels to 3
42
+ if len(im.shape) == 2:
43
+ im = im[:, :, None]
44
+ if im.shape[2] == 1:
45
+ im = np.repeat(im, 3, axis=2)
46
+ elif im.shape[2] == 4:
47
+ im = im[:, :, 0:3]
48
+
49
+ # normalize values to scale it between -1 to 1
50
+ im = (im - 127.5) / 127.5
51
+
52
+ im_h, im_w, im_c = im.shape
53
+ x, y = get_scale_factor(im_h, im_w)
54
+
55
+ # resize image
56
+ im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA)
57
+
58
+ # prepare input shape
59
+ im = np.transpose(im)
60
+ im = np.swapaxes(im, 1, 2)
61
+ im = np.expand_dims(im, axis=0).astype('float32')
62
+
63
+ # Initialize session and get prediction
64
+ session = onnxruntime.InferenceSession(MODEL_PATH, None)
65
+ input_name = session.get_inputs()[0].name
66
+ output_name = session.get_outputs()[0].name
67
+ result = session.run([output_name], {input_name: im})
68
+
69
+ # refine matte
70
+ matte = (np.squeeze(result[0]) * 255).astype('uint8')
71
+ matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA)
72
+
73
+ # HACK - Could probably just convert this to PIL instead of writing
74
+ cv2.imwrite('out.png', matte)
75
+
76
+ image = Image.open(image_path)
77
+ matte = Image.open('out.png')
78
+
79
+ # obtain predicted foreground
80
+ image = np.asarray(image)
81
+ if len(image.shape) == 2:
82
+ image = image[:, :, None]
83
+ if image.shape[2] == 1:
84
+ image = np.repeat(image, 3, axis=2)
85
+ elif image.shape[2] == 4:
86
+ image = image[:, :, 0:3]
87
+ matte = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) / 255
88
+ foreground = image * matte + np.full(image.shape, 255) * (1 - matte)
89
+ return Image.fromarray(foreground.astype(np.uint8))
90
+
91
+
92
+ title = "MODNet Background Remover"
93
+ description = "Gradio demo for MODNet, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
94
+ article = "<div style='text-align: center;'> <a href='https://github.com/ZHKKKe/MODNet' target='_blank'>Github Repo</a> | <a href='https://arxiv.org/abs/2011.11961' target='_blank'>MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition</a> </div>"
95
+
96
+ interface = gr.Interface(
97
+ fn=main,
98
+ inputs=gr.inputs.Image(type='filepath'),
99
+ outputs='image',
100
+ examples=[
101
+ [
102
+ hf_hub_download(
103
+ 'nateraw/background-remover-files',
104
+ 'twitter_profile_pic.jpeg',
105
+ repo_type='dataset',
106
+ force_filename='twitter_profile_pic.jpeg',
107
+ )
108
+ ]
109
+ ],
110
+ title=title,
111
+ description=description,
112
+ article=article,
113
+ )
114
+
115
+ if __name__ == '__main__':
116
+ interface.launch(debug=True)
packages.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ffmpeg
2
+ libsm6
3
+ libxext6
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ onnxruntime==1.6.0
3
+ onnx
4
+ opencv-python
5
+ numpy
6
+ huggingface_hub