Spaces:
Runtime error
Runtime error
File size: 5,633 Bytes
33d5fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torchvision.models.resnet import resnet50
import vision_transformer as vits
dependencies = ["torch", "torchvision"]
def dino_vits16(pretrained=True, **kwargs):
"""
ViT-Small/16x16 pre-trained with DINO.
Achieves 74.5% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_small"](patch_size=16, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vits8(pretrained=True, **kwargs):
"""
ViT-Small/8x8 pre-trained with DINO.
Achieves 78.3% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_small"](patch_size=8, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_deitsmall8_pretrain/dino_deitsmall8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vitb16(pretrained=True, **kwargs):
"""
ViT-Base/16x16 pre-trained with DINO.
Achieves 76.1% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_base"](patch_size=16, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_vitb8(pretrained=True, **kwargs):
"""
ViT-Base/8x8 pre-trained with DINO.
Achieves 77.4% top-1 accuracy on ImageNet with k-NN classification.
"""
model = vits.__dict__["vit_base"](patch_size=8, num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_resnet50(pretrained=True, **kwargs):
"""
ResNet-50 pre-trained with DINO.
Achieves 75.3% top-1 accuracy on ImageNet linear evaluation benchmark (requires to train `fc`).
"""
model = resnet50(pretrained=False, **kwargs)
model.fc = torch.nn.Identity()
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_resnet50_pretrain/dino_resnet50_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=False)
return model
def dino_xcit_small_12_p16(pretrained=True, **kwargs):
"""
XCiT-Small-12/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p16_pretrain/dino_xcit_small_12_p16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_small_12_p8(pretrained=True, **kwargs):
"""
XCiT-Small-12/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_small_12_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_small_12_p8_pretrain/dino_xcit_small_12_p8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_medium_24_p16(pretrained=True, **kwargs):
"""
XCiT-Medium-24/16 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p16", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p16_pretrain/dino_xcit_medium_24_p16_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
def dino_xcit_medium_24_p8(pretrained=True, **kwargs):
"""
XCiT-Medium-24/8 pre-trained with DINO.
"""
model = torch.hub.load('facebookresearch/xcit', "xcit_medium_24_p8", num_classes=0, **kwargs)
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url="https://dl.fbaipublicfiles.com/dino/dino_xcit_medium_24_p8_pretrain/dino_xcit_medium_24_p8_pretrain.pth",
map_location="cpu",
)
model.load_state_dict(state_dict, strict=True)
return model
|