File size: 21,044 Bytes
c7a96cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
import torch
import torch.distributed

from torch.nn import functional as F

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
from typing import Optional, Tuple, List, Type, Union, Dict

from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    NextTokenChooser,
    StoppingCriteria,
    Sampling,
)

tracer = trace.get_tracer(__name__)


@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]

    # Decoder values
    input_ids: List[torch.Tensor]
    position_ids: List[torch.Tensor]
    # cumulative sequence lengths
    cu_seqlens: List[int]
    max_seqlen: int
    past_key_values: Optional[Union[torch.Tensor, List[torch.Tensor]]]

    # All tokens
    all_input_ids: List[List[int]]
    all_input_ids_tensor: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    offsets: List[Optional[int]]
    token_offsets: List[Optional[int]]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

    # Constant shared tensor, ref here just so that it's accessible in concatentate()
    past_pad: Optional[torch.Tensor]

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    def to_pb(self) -> generate_pb2.Batch:
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=len(self),
            max_tokens=self.max_tokens,
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0

        input_lengths = []
        offsets = []
        token_offsets = []
        all_input_ids = []
        all_input_ids_tensor = []
        requests_idx_mapping = {}

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_length = 0

        max_tokens = 0

        # Parse batch
        for i, r in enumerate(pb.requests):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

            tokenized_input = tokenizer(
                r.inputs, truncation=True, max_length=r.truncate
            )["input_ids"]

            input_length = len(tokenized_input)
            max_seqlen = max(max_seqlen, input_length)
            input_lengths.append(input_length)

            offsets.append(None)
            token_offsets.append(None)
            all_input_ids.append(tokenized_input)

            tokenized_input = torch.tensor(tokenized_input, device=device)
            input_ids.append(tokenized_input)

            # Position ids
            position_ids.append(
                torch.arange(0, input_length, dtype=torch.int32, device=device)
            )

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(cumulative_length + input_length)

            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))

            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            max_new_tokens = stopping_criteria.max_new_tokens
            stopping_criterias.append(stopping_criteria)

            all_input_ids_tensor.append(
                F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
            )

            # Update
            cumulative_length += input_length
            max_tokens += input_length + max_new_tokens

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=None,
            input_lengths=input_lengths,
            offsets=offsets,
            token_offsets=token_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            past_pad=None,
            max_tokens=max_tokens,
        )

    @tracer.start_as_current_span("filter")
    def filter(self, requests: List[generate_pb2.Request]) -> "FlashCausalLMBatch":
        if len(requests) == 0:
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
        if len(requests) == len(self):
            return self

        single_request = len(requests) == 1

        # Cumulative length
        cumulative_length = 0

        # New values after filtering
        requests_idx_mapping = {}

        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0
        past_key_values = []

        all_input_ids = []
        all_input_ids_tensor = []

        input_lengths = []
        offsets = []
        token_offsets = []

        next_token_choosers = []
        stopping_criterias = []

        max_tokens = 0

        for i, r in enumerate(requests):
            idx = self.requests_idx_mapping[r.id]
            requests_idx_mapping[r.id] = i

            # Get length
            request_input_length = self.input_lengths[idx]

            input_ids.append(self.input_ids[idx])
            position_ids.append(self.position_ids[idx])
            cu_seqlens.append(cumulative_length + request_input_length)
            max_seqlen = max(max_seqlen, request_input_length)
            # True index for past
            past_key_values.append(self.past_key_values[2 * idx])

            if not single_request:
                # Add one padding
                past_key_values.append(self.past_pad)

            all_input_ids.append(self.all_input_ids[idx])
            all_input_ids_tensor.append(self.all_input_ids_tensor[idx])

            input_lengths.append(request_input_length)
            offsets.append(self.offsets[idx])
            token_offsets.append(self.token_offsets[idx])

            next_token_choosers.append(self.next_token_choosers[idx])

            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)

            cumulative_length += request_input_length
            max_tokens += request_input_length + (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )

        if single_request:
            # Preallocate tensor for bs = 1 case
            past_key_values = torch.nn.functional.pad(
                past_key_values[0],
                (
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    stopping_criterias[0].max_new_tokens
                    - stopping_criterias[0].current_tokens,
                ),
            )

        return FlashCausalLMBatch(
            batch_id=self.batch_id,
            past_pad=self.past_pad,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            offsets=offsets,
            token_offsets=token_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            max_tokens=max_tokens,
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0
        past_key_values = []

        all_input_ids = []
        all_input_ids_tensor = []

        input_lengths = []
        offsets = []
        token_offsets = []

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_batch_size = 0
        cumulative_length = 0
        max_tokens = 0

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

            input_ids.extend(batch.input_ids)
            position_ids.extend(batch.position_ids)
            # Add cumulative lengths of all previous inputs
            cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
            max_seqlen = max(max_seqlen, batch.max_seqlen)

            if len(batch) != 1:
                past_key_values.extend(batch.past_key_values)
            else:
                # past was pre-allocated for this batch
                # We need to slice to remove the padding
                past_key_values.append(
                    batch.past_key_values[:, : batch.input_lengths[0]]
                )
                # Add one padding
                past_key_values.append(batch.past_pad)

            all_input_ids.extend(batch.all_input_ids)
            all_input_ids_tensor.extend(batch.all_input_ids_tensor)

            input_lengths.extend(batch.input_lengths)
            offsets.extend(batch.offsets)
            token_offsets.extend(batch.token_offsets)

            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Update
            cumulative_length += batch.cu_seqlens[-1]
            cumulative_batch_size += len(batch)
            max_tokens += batch.max_tokens

        return FlashCausalLMBatch(
            batch_id=batches[0].batch_id,
            past_pad=batches[0].past_pad,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            offsets=offsets,
            token_offsets=token_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            max_tokens=max_tokens,
        )

    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
        model_cls: Type[PreTrainedModel],
        model_id: str,
        revision: Optional[str] = None,
        quantize: bool = False,
        decode_buffer: int = 3,
    ):
        self.past_pad = None
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashCausalLM is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id, revision=revision, padding_side="left", truncation_side="left"
        )
        self.model = (
            model_cls.from_pretrained(
                model_id,
                revision=revision,
                torch_dtype=dtype,
                load_in_8bit=quantize,
            )
            .eval()
            .to(device)
        )

        super(FlashCausalLM, self).__init__(
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
            decode_buffer=decode_buffer,
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

    def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
        pre_allocate_past_size: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_s=max_s,
            past_key_values=past_key_values,
            pre_allocate_past_size=pre_allocate_past_size,
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
        # Shortcut when batch_size == 1
        if len(batch) == 1:
            input_ids = batch.input_ids[0].view(-1)
            # No need to slice as flash attention will take care of it with cu_seqlens
            past_key_values = batch.past_key_values
        else:
            # Concatenate tensors
            input_ids = torch.cat(batch.input_ids).view(-1)
            past_key_values = (
                torch.cat(batch.past_key_values, dim=1)
                if batch.past_key_values is not None
                else None
            )

        # if prefill and bs == 1
        if past_key_values is None and len(batch) == 1:
            # Ask to pre-allocate kv to its max size
            # == number of tokens + max_new_tokens
            pre_allocate_past_size = (
                batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
            )
        else:
            pre_allocate_past_size = None

        # Concatenate when prefill, torch.tensor when decode
        position_ids = (
            torch.tensor(batch.position_ids, device=self.device)
            if batch.past_key_values is not None
            else torch.cat(batch.position_ids)
        )
        cu_seqlens = torch.tensor(
            batch.cu_seqlens, device=self.device, dtype=torch.int32
        )

        out, present = self.forward(
            input_ids,
            position_ids,
            cu_seqlens,
            batch.max_seqlen,
            past_key_values,
            pre_allocate_past_size,
        )

        # Initialize past_key_values in prefill
        if batch.past_key_values is None:
            # Initialize past padding tensor
            if self.past_pad is None:
                self.past_pad = present.new_zeros(
                    present.shape[0], 1, *present.shape[2:]
                )
            # Set in batch in case it needs to be used later in concatenate()
            batch.past_pad = self.past_pad
            if len(batch) == 1:
                # present is already pre-padded
                batch.past_key_values = present
            else:
                # Add padding after each sequence
                # This will have the correct shape after the final past_key_values concatenation before the model
                # forward
                batch.past_key_values = [None, self.past_pad] * len(batch)

        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
        stopped = True

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.offsets,
            batch.token_offsets,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.all_input_ids_tensor,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            offset,
            token_offset,
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            all_input_ids_tensor,
        ) in enumerate(iterator):
            # Indexing metadata
            start_index = cumulative_length
            end_index = cumulative_length + input_length

            prefill = stopping_criteria.current_tokens == 0
            if prefill:
                # Prefill mode
                # out is of shape [cumulative_sequence_lengths, vocab_size]
                logits = out[start_index:end_index]
            else:
                # Decode mode
                # out is of shape [batch_size, vocab_size]
                logits = out[i].unsqueeze(0)

            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids_tensor[None, :input_length], logits
            )
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_id_item = next_token_id_squeezed.item()

            # Append next token to all tokens
            all_input_ids.append(next_token_id_item)
            all_input_ids_tensor[input_length] = next_token_id_item

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id_item]
            next_token_text, offset, token_offset = self.decode_token(
                all_input_ids,
                offset,
                token_offset,
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_item,
                next_token_text,
            )

            if stop:
                # Decode generated tokens
                output_text = self.decode(
                    all_input_ids[-stopping_criteria.current_tokens :]
                )
                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
                )
            else:
                stopped = False
                generated_text = None

            # Prefill
            if prefill:
                # Remove generated token to only have prefill and add nan for first prompt token
                prefill_logprobs = [float("nan")] + logprobs.gather(
                    1, all_input_ids_tensor[1:input_length].unsqueeze(1)
                ).squeeze(1)[:-1].tolist()
                prefill_token_ids = all_input_ids[:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, prefill_logprobs, prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_item,
                next_token_logprob,
                next_token_text,
                next_token_id_item in self.all_special_ids,
                generated_text,
            )

            generations.append(generation)
            cumulative_length += input_length
            new_input_length = input_length + 1

            # Update values
            batch.input_ids[i] = next_token_id
            batch.position_ids[i] = input_length
            batch.input_lengths[i] = new_input_length
            batch.offsets[i] = offset
            batch.token_offsets[i] = token_offset
            batch.all_input_ids[i] = all_input_ids
            batch.all_input_ids_tensor[i] = all_input_ids_tensor
            batch.max_seqlen = max(batch.max_seqlen, new_input_length)
            if len(batch) != 1:
                # Add each sequence before its padding
                batch.past_key_values[i * 2] = present[:, start_index:end_index]
            # Cumulative sum
            batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length

        # No need to return a batch if we know that all requests stopped
        return generations, batch if not stopped else None