from diffusers import DDPMPipeline
import torch
import PIL.Image
import gradio as gr
import random
import numpy as np
ddpm_pipeline = DDPMPipeline.from_pretrained("nateraw/my-aurora")
def predict(seed=42):
generator = torch.manual_seed(seed)
images = ddpm_pipeline(generator=generator)["sample"]
return images[0]
random_seed = random.randint(0, 2147483647)
gr.Interface(
predict,
inputs=[
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
],
outputs=gr.Image(shape=[32,32], type="pil", elem_id="output_image"),
title="Generate aurora with diffusers!",
description="This demo the my-aurora model to generate aurora created by nateraw using the Diffuse It! tool. Inference might take around a minute.",
).launch(debug=True, enable_queue=True)