File size: 11,804 Bytes
c978742 137bd5e c978742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# Experimental app to help with the process of generating music videos
# Requires youtube-dl to be installed
# pip install youtube-dl
import os
import random
from io import BytesIO
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import youtube_dl
from diffusers.models import AutoencoderKL
from diffusers.schedulers import LMSDiscreteScheduler
from matplotlib import pyplot as plt
from stable_diffusion_videos import StableDiffusionWalkPipeline, generate_images, get_timesteps_arr
from huggingface_hub import HfFolder
HfFolder().save_token(os.environ['HF_TOKEN'])
pipe = StableDiffusionWalkPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
vae=AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema"),
torch_dtype=torch.float16,
revision="fp16",
safety_checker=None,
scheduler=LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"),
).to("cuda")
def download_example_clip(url, output_dir="./", output_filename="%(title)s.%(ext)s"):
if (Path(output_dir) / output_filename).exists():
return str(Path(output_dir) / output_filename)
files_before = os.listdir(output_dir) if os.path.exists(output_dir) else []
ydl_opts = {
"outtmpl": str(Path(output_dir) / output_filename),
"format": "bestaudio",
"extract-audio": True,
"audio-format": "mp3",
"audio-quality": 0,
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
files_after = os.listdir(output_dir)
return str(Path(output_dir) / list(set(files_after) - set(files_before))[0])
def audio_data_to_buffer(y, sr):
audio_filepath = BytesIO()
audio_filepath.name = "audio.wav"
sf.write(audio_filepath, y, samplerate=sr, format="WAV")
audio_filepath.seek(0)
return audio_filepath
def plot_array(y):
fig = plt.figure()
x = np.arange(y.shape[0])
plt.title("Line graph")
plt.xlabel("X axis")
plt.ylabel("Y axis")
plt.plot(x, y, color="red")
plt.savefig("timesteps_chart.png")
return fig
def on_slice_btn_click(audio, audio_start_sec, duration, fps, smooth, margin):
if audio is None:
return [
gr.update(visible=False),
gr.update(visible=False),
]
y, sr = librosa.load(audio, offset=audio_start_sec, duration=duration)
T = get_timesteps_arr(
audio_data_to_buffer(y, sr),
0,
duration,
fps=fps,
margin=margin,
smooth=smooth,
)
return [gr.update(value=(sr, y), visible=True), gr.update(value=plot_array(T), visible=True)]
def on_audio_change_or_clear(audio):
if audio is None:
return [gr.update(visible=False), gr.update(visible=False)]
duration = librosa.get_duration(filename=audio)
return [gr.update(maximum=int(duration), visible=True), gr.update(maximum=int(min(10, duration)), visible=True)]
def on_update_weight_settings_btn_click(sliced_audio, duration, fps, smooth, margin):
if sliced_audio is None:
return gr.update(visible=False)
T = get_timesteps_arr(
sliced_audio,
0,
duration,
fps=fps,
margin=margin,
smooth=smooth,
)
return gr.update(value=plot_array(T), visible=True)
def on_generate_images_btn_click(
prompt_a,
prompt_b,
seed_a,
seed_b,
output_dir,
num_inference_steps,
guidance_scale,
height,
width,
upsample,
):
output_dir = Path(output_dir) / "images"
if seed_a == -1:
seed_a = random.randint(0, 9999999)
if seed_b == -1:
seed_b = random.randint(0, 9999999)
image_a_fpath = generate_images(
pipe,
prompt_a,
seeds=[seed_a],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
upsample=upsample,
output_dir=output_dir,
)[0]
image_b_fpath = generate_images(
pipe,
prompt_b,
seeds=[seed_b],
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
upsample=upsample,
output_dir=output_dir,
)[0]
return [
gr.update(value=image_a_fpath, visible=True),
gr.update(value=image_b_fpath, visible=True),
gr.update(value=seed_a),
gr.update(value=seed_b),
]
def on_generate_music_video_btn_click(
audio_filepath,
audio_start_sec,
duration,
fps,
smooth,
margin,
prompt_a,
prompt_b,
seed_a,
seed_b,
batch_size,
output_dir,
num_inference_steps,
guidance_scale,
height,
width,
upsample,
):
if audio_filepath is None:
return gr.update(visible=False)
video_filepath = pipe.walk(
prompts=[prompt_a, prompt_b],
seeds=[seed_a, seed_b],
num_interpolation_steps=int(duration * fps),
output_dir=output_dir,
fps=fps,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
upsample=upsample,
batch_size=batch_size,
audio_filepath=audio_filepath,
audio_start_sec=audio_start_sec,
margin=margin,
smooth=smooth,
)
return gr.update(value=video_filepath, visible=True)
audio_start_sec = gr.Slider(0, 10, 0, step=1, label="Start (sec)", interactive=True)
duration = gr.Slider(0, 10, 1, step=1, label="Duration (sec)", interactive=True)
slice_btn = gr.Button("Slice Audio")
sliced_audio = gr.Audio(type="filepath")
wav_plot = gr.Plot(label="Interpolation Weights Per Frame")
fps = gr.Slider(1, 60, 12, step=1, label="FPS", interactive=True)
smooth = gr.Slider(0, 1, 0.0, label="Smoothing", interactive=True)
margin = gr.Slider(1.0, 20.0, 1.0, step=0.5, label="Margin Max", interactive=True)
update_weight_settings_btn = gr.Button("Update Interpolation Weights")
prompt_a = gr.Textbox(value="blueberry spaghetti", label="Prompt A")
prompt_b = gr.Textbox(value="strawberry spaghetti", label="Prompt B")
seed_a = gr.Number(-1, label="Seed A", precision=0, interactive=True)
seed_b = gr.Number(-1, label="Seed B", precision=0, interactive=True)
generate_images_btn = gr.Button("Generate Images")
image_a = gr.Image(visible=False, label="Image A")
image_b = gr.Image(visible=False, label="Image B")
batch_size = gr.Slider(1, 32, 1, step=1, label="Batch Size", interactive=True)
generate_music_video_btn = gr.Button("Generate Music Video")
video = gr.Video(visible=False, label="Video")
STEP_1_MARKDOWN = """
## 1. Upload Some Audio
Upload an audio file to use as the source for the music video.
"""
STEP_2_MARKDOWN = """
## 2. Slice Portion of Audio for Generated Clip
Here you can slice a portion of the audio to use for the generated music video. The longer the audio, the more frames will be generated (which will take longer).
I suggest you use this app to make music videos in segments of 5-10 seconds at a time. Then, you can stitch the videos together using a video editor or ffmpeg later.
**Warning**: If your audio file is short, I do no check that the duration you chose is not longer than the audio. It may cause some issues, so just be mindful of that.
"""
STEP_3_MARKDOWN = """
## 3. Set Interpolation Weight Settings
This section lets you play with the settings used to configure how we move through the latent space given the audio you sliced.
If you look at the graph on the right, you'll see in the X-axis how many frames. The Y-axis is the weight of Image A as we move through the latent space.
If you listen to the audio slice and look at the graph, you should see bumps at points where the audio energy is high (in our case, percussive energy).
"""
STEP_4_MARKDOWN = """
## 4. Select Prompts, Seeds, Settings, and Generate Images
Here you can select the settings for image generation.
Then, you can select prompts and seeds for generating images.
- Image A will be first frame of the generated video.
- Image B will be last frame of the generated video.
- The video will be generated by interpolating between the two images using the audio you provided.
If you set the seeds to -1, a random seed will be used and saved for you, so you can explore different images given the same prompt.
"""
with gr.Blocks() as demo:
gr.Markdown(STEP_1_MARKDOWN)
audio = gr.Audio(type="filepath", interactive=True)
gr.Examples(
[
download_example_clip(
url="https://soundcloud.com/nateraw/thoughts", output_dir="./music", output_filename="thoughts.mp3"
)
],
inputs=audio,
outputs=[audio_start_sec, duration],
fn=on_audio_change_or_clear,
cache_examples=True,
)
audio.change(on_audio_change_or_clear, audio, [audio_start_sec, duration])
audio.clear(on_audio_change_or_clear, audio, [audio_start_sec, duration])
gr.Markdown(STEP_2_MARKDOWN)
audio_start_sec.render()
duration.render()
slice_btn.render()
slice_btn.click(
on_slice_btn_click, [audio, audio_start_sec, duration, fps, smooth, margin], [sliced_audio, wav_plot]
)
sliced_audio.render()
gr.Markdown(STEP_3_MARKDOWN)
with gr.Row():
with gr.Column(scale=4):
fps.render()
smooth.render()
margin.render()
update_weight_settings_btn.render()
update_weight_settings_btn.click(
on_update_weight_settings_btn_click, [sliced_audio, duration, fps, smooth, margin], wav_plot
)
with gr.Column(scale=3):
wav_plot.render()
gr.Markdown(STEP_4_MARKDOWN)
with gr.Accordion("Additional Settings", open=False):
output_dir = gr.Textbox(value="./dreams", label="Output Directory")
num_inference_steps = gr.Slider(1, 200, 50, step=10, label="Diffusion Inference Steps", interactive=True)
guidance_scale = gr.Slider(1.0, 25.0, 7.5, step=0.5, label="Guidance Scale", interactive=True)
height = gr.Slider(512, 1024, 512, step=64, label="Height", interactive=True)
width = gr.Slider(512, 1024, 512, step=64, label="Width", interactive=True)
upsample = gr.Checkbox(value=False, label="Upsample with Real-ESRGAN")
with gr.Row():
with gr.Column(scale=4):
prompt_a.render()
with gr.Column(scale=1):
seed_a.render()
with gr.Row():
with gr.Column(scale=4):
prompt_b.render()
with gr.Column(scale=1):
seed_b.render()
generate_images_btn.render()
with gr.Row():
with gr.Column(scale=1):
image_a.render()
with gr.Column(scale=1):
image_b.render()
generate_images_btn.click(
on_generate_images_btn_click,
[prompt_a, prompt_b, seed_a, seed_b, output_dir, num_inference_steps, guidance_scale, height, width, upsample],
[image_a, image_b, seed_a, seed_b],
)
gr.Markdown("## 5. Generate Music Video")
# TODO - add equivalent code snippet to generate music video
batch_size.render()
generate_music_video_btn.render()
generate_music_video_btn.click(
on_generate_music_video_btn_click,
[
audio,
audio_start_sec,
duration,
fps,
smooth,
margin,
prompt_a,
prompt_b,
seed_a,
seed_b,
batch_size,
output_dir,
num_inference_steps,
guidance_scale,
height,
width,
upsample,
],
video,
)
video.render()
if __name__ == "__main__":
demo.launch(debug=True)
|