File size: 12,713 Bytes
f9158ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import pytest
import torch

from copy import copy

from transformers import AutoTokenizer

from text_generation_server.pb import generate_pb2
from text_generation_server.models.seq2seq_lm import Seq2SeqLM, Seq2SeqLMBatch


@pytest.fixture(scope="session")
def mt0_small_tokenizer():
    tokenizer = AutoTokenizer.from_pretrained(
        "bigscience/mt0-small", padding_side="left"
    )
    tokenizer.bos_token_id = 0
    return tokenizer


@pytest.fixture(scope="session")
def default_seq2seq_lm():
    return Seq2SeqLM("bigscience/mt0-small")


@pytest.fixture
def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
    return generate_pb2.Request(
        id=0,
        inputs="Test",
        truncate=100,
        parameters=default_pb_parameters,
        stopping_parameters=default_pb_stop_parameters,
    )


@pytest.fixture
def default_pb_batch(default_pb_request):
    return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1)


@pytest.fixture
def default_seq2seq_lm_batch(default_pb_batch, mt0_small_tokenizer):
    return Seq2SeqLMBatch.from_pb(
        default_pb_batch, mt0_small_tokenizer, torch.device("cpu")
    )


@pytest.fixture
def default_multi_requests_seq2seq_lm_batch(default_pb_request, mt0_small_tokenizer):
    req_0 = copy(default_pb_request)
    req_0.id = 1
    req_1 = default_pb_request
    req_1.id = 2
    req_1.stopping_parameters.max_new_tokens = 5

    batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2)
    return Seq2SeqLMBatch.from_pb(batch_pb, mt0_small_tokenizer, torch.device("cpu"))


def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch):
    batch = default_seq2seq_lm_batch
    sequence_length = len(default_seq2seq_lm_batch.input_ids[0])

    assert batch.batch_id == default_pb_batch.id
    assert batch.requests == default_pb_batch.requests

    assert batch.input_ids.shape == (default_pb_batch.size, sequence_length)
    assert batch.input_ids[0][-2] == 4268
    assert batch.input_ids[0][-1] == 1
    assert torch.all(batch.input_ids[0][:-2] == 0)

    assert torch.all(batch.attention_mask[0][-2:] == 1)
    assert torch.all(batch.attention_mask[0][:-2] == 0)

    assert len(batch.decoder_input_ids) == default_pb_batch.size
    assert batch.decoder_attention_mask is None
    assert batch.encoder_last_hidden_state is None

    assert batch.past_key_values is None

    assert batch.input_lengths == [2]
    assert batch.decoder_input_lengths == [1]

    assert len(batch) == default_pb_batch.size
    assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch)

    assert batch.max_input_length == batch.input_lengths[0]
    assert batch.max_decoder_input_length == batch.decoder_input_lengths[0]


def test_batch_concatenate_no_prefill(default_seq2seq_lm_batch):
    with pytest.raises(ValueError):
        Seq2SeqLMBatch.concatenate([default_seq2seq_lm_batch, default_seq2seq_lm_batch])


def test_seq2seq_lm_batch_type(default_seq2seq_lm):
    assert default_seq2seq_lm.batch_type == Seq2SeqLMBatch


def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch):
    sequence_length = len(default_seq2seq_lm_batch.input_ids[0])
    generations, next_batch = default_seq2seq_lm.generate_token(
        default_seq2seq_lm_batch
    )

    assert len(generations) == len(next_batch)
    assert isinstance(next_batch, Seq2SeqLMBatch)

    assert next_batch.input_ids is None
    assert torch.equal(
        next_batch.attention_mask, default_seq2seq_lm_batch.attention_mask
    )
    assert next_batch.input_lengths == default_seq2seq_lm_batch.input_lengths
    assert next_batch.max_input_length == default_seq2seq_lm_batch.max_input_length
    assert (
        next_batch.next_token_choosers == default_seq2seq_lm_batch.next_token_choosers
    )
    assert next_batch.stopping_criterias == default_seq2seq_lm_batch.stopping_criterias

    assert len(next_batch.decoder_input_ids) == len(next_batch)
    assert next_batch.all_decoder_input_ids[0][0] == 0
    assert next_batch.all_decoder_input_ids[0][1] == 259
    assert next_batch.decoder_attention_mask is None
    assert next_batch.encoder_last_hidden_state.shape == (1, sequence_length, 512)

    assert next_batch.decoder_input_lengths == [2]
    assert next_batch.max_decoder_input_length == 2

    assert next_batch.past_key_values is not None
    assert all(
        [p[0].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[1].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [
            p[2].shape == (len(next_batch), 6, sequence_length, 64)
            for p in next_batch.past_key_values
        ]
    )
    assert all(
        [
            p[3].shape == (len(next_batch), 6, sequence_length, 64)
            for p in next_batch.past_key_values
        ]
    )
    assert all([generation.generated_text is None for generation in generations])
    assert all([len(generation.prefill_tokens) == 1 for generation in generations])
    assert all([generation.token_id.item() == 259 for generation in generations])
    assert all([generation.token_text == "" for generation in generations])
    assert generations[0].request_id == 0


def test_seq2seq_lm_generate_token_completion(
    default_seq2seq_lm, default_seq2seq_lm_batch
):
    next_batch = default_seq2seq_lm_batch
    for _ in range(6):
        generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert len(generations) == len(next_batch)

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generations) == 1
    assert generations[0].generated_text.text == "a few weeks"
    assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id
    assert generations[0].generated_text.generated_tokens == 7


def test_seq2seq_lm_generate_token_completion_multi(
    default_seq2seq_lm, default_multi_requests_seq2seq_lm_batch
):
    next_batch = default_multi_requests_seq2seq_lm_batch

    for i in range(4):
        generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert len(generations) == len(next_batch)

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generations) == 2
    assert generations[1].generated_text.text == "a few "
    assert (
        generations[1].request_id
        == default_multi_requests_seq2seq_lm_batch.requests[1].id
    )
    assert generations[1].generated_text.generated_tokens == 5

    next_batch = next_batch.filter([next_batch.requests[0]])

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert len(generations) == len(next_batch)

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generations) == 1
    assert generations[0].generated_text.text == "a few weeks"
    assert (
        generations[0].request_id
        == default_multi_requests_seq2seq_lm_batch.requests[0].id
    )
    assert generations[0].generated_text.generated_tokens == 7


def test_batch_concatenate(
    default_seq2seq_lm,
    default_seq2seq_lm_batch,
    default_multi_requests_seq2seq_lm_batch,
):
    next_batch_0 = default_seq2seq_lm_batch
    _, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0)
    _, next_batch_0 = default_seq2seq_lm.generate_token(next_batch_0)

    next_batch_1 = default_multi_requests_seq2seq_lm_batch
    _, next_batch_1 = default_seq2seq_lm.generate_token(next_batch_1)

    # Copy hidden state because it is removed from the concatenated branches
    next_batch_0_encoder_last_hidden_state = next_batch_0.encoder_last_hidden_state
    next_batch_1_encoder_last_hidden_state = next_batch_1.encoder_last_hidden_state

    # Clone past_key_values before concatenating to compare after,
    # because they are removed from the concatenated batches
    next_batch_0_past_key_values = [
        [t.clone() for t in layer] for layer in next_batch_0.past_key_values
    ]
    next_batch_1_past_key_values = [
        [t.clone() for t in layer] for layer in next_batch_1.past_key_values
    ]

    next_batch = Seq2SeqLMBatch.concatenate([next_batch_0, next_batch_1])

    assert next_batch.batch_id == 0

    assert torch.equal(
        next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0]
    )
    assert next_batch.all_decoder_input_ids[1][0] == 0
    assert next_batch.all_decoder_input_ids[2][0] == 0
    assert torch.equal(
        next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids
    )

    assert torch.all(next_batch.decoder_attention_mask[0, :3] == 1)
    assert torch.all(next_batch.decoder_attention_mask[0, 3:] == 0)
    assert torch.all(next_batch.decoder_attention_mask[1:, 0] == 0)
    assert torch.all(next_batch.decoder_attention_mask[1:, 1:3] == 1)

    assert torch.equal(
        next_batch.encoder_last_hidden_state[0],
        next_batch_0_encoder_last_hidden_state[0, -2:],
    )
    assert torch.equal(
        next_batch.encoder_last_hidden_state[1:],
        next_batch_1_encoder_last_hidden_state[:, -2:],
    )

    assert next_batch.input_lengths == [2, 2, 2]
    assert next_batch.decoder_input_lengths == [3, 2, 2]
    assert next_batch.max_input_length == 2
    assert next_batch.max_decoder_input_length == 3

    assert next_batch.requests[0] == next_batch_0.requests[0]
    assert next_batch.requests[1:] == next_batch_1.requests

    assert next_batch.next_token_choosers[0] == next_batch_0.next_token_choosers[0]
    assert next_batch.next_token_choosers[1:] == next_batch_1.next_token_choosers

    assert next_batch.stopping_criterias[0] == next_batch_0.stopping_criterias[0]
    assert next_batch.stopping_criterias[1:] == next_batch_1.stopping_criterias

    assert next_batch.past_key_values is not None
    assert all(
        [p[0].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[1].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[2].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
    )
    assert all(
        [p[3].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
    )

    for i, past in enumerate(next_batch.past_key_values):
        assert torch.equal(next_batch_0_past_key_values[i][0][0, :, -2:, :], past[0][0])
        assert torch.equal(
            next_batch_1_past_key_values[i][0][:, :, -1:, :], past[0][1:, :, -1:, :]
        )

        assert torch.equal(next_batch_0_past_key_values[i][1][0, :, -2:, :], past[1][0])
        assert torch.equal(
            next_batch_1_past_key_values[i][1][:, :, -1:, :], past[1][1:, :, -1:, :]
        )

        assert torch.equal(next_batch_0_past_key_values[i][2][0, :, -2:, :], past[2][0])
        assert torch.equal(
            next_batch_1_past_key_values[i][2][:, :, -2:, :], past[2][1:]
        )

        assert torch.equal(next_batch_0_past_key_values[i][3][0, :, -2:, :], past[3][0])
        assert torch.equal(
            next_batch_1_past_key_values[i][3][:, :, -2:, :], past[3][1:]
        )

    for _ in range(3):
        generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
        assert len(generations) == len(next_batch)

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generations) == 3
    assert generations[2].generated_text.text == "a few "
    assert (
        generations[2].request_id
        == default_multi_requests_seq2seq_lm_batch.requests[1].id
    )
    assert generations[2].generated_text.generated_tokens == 5

    next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]])

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is not None

    assert len(generations) == 2
    assert generations[0].generated_text.text == "a few weeks"
    assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id
    assert generations[0].generated_text.generated_tokens == 7

    next_batch = next_batch.filter([next_batch.requests[1]])

    generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
    assert next_batch is None

    assert len(generations) == 1
    assert generations[0].generated_text.text == "a few weeks"
    assert (
        generations[0].request_id
        == default_multi_requests_seq2seq_lm_batch.requests[0].id
    )
    assert generations[0].generated_text.generated_tokens == 7