Spaces:
Runtime error
Runtime error
import concurrent | |
import time | |
import torch | |
from concurrent.futures import ThreadPoolExecutor | |
from collections import defaultdict | |
from datetime import timedelta | |
from loguru import logger | |
from pathlib import Path | |
from safetensors.torch import load_file, save_file | |
from typing import Dict, List | |
def check_file_size(source_file: Path, target_file: Path): | |
""" | |
Check that two files are close in size | |
""" | |
source_file_size = source_file.stat().st_size | |
target_file_size = target_file.stat().st_size | |
if (source_file_size - target_file_size) / source_file_size > 0.01: | |
raise RuntimeError( | |
f"""The file size different is more than 1%: | |
- {source_file}: {source_file_size} | |
- {target_file}: {target_file_size} | |
""" | |
) | |
def remove_shared_pointers(tensors: Dict[str, torch.Tensor]): | |
""" | |
For a Dict of tensors, check if two or more tensors point to the same underlying memory and | |
remove them | |
""" | |
ptrs = defaultdict(list) | |
for k, v in tensors.items(): | |
ptrs[v.data_ptr()].append(k) | |
# Iterate over all found memory addresses | |
for ptr, names in ptrs.items(): | |
if len(names) > 1: | |
# Multiple tensors are point to the same memory | |
# Only keep the first tensor | |
for name in names[1:]: | |
tensors.pop(name) | |
def convert_file(pt_file: Path, st_file: Path): | |
""" | |
Convert a pytorch file to a safetensors file | |
""" | |
logger.info(f"Convert {pt_file} to {st_file}.") | |
pt_state = torch.load(pt_file, map_location="cpu") | |
if "state_dict" in pt_state: | |
pt_state = pt_state["state_dict"] | |
remove_shared_pointers(pt_state) | |
# Tensors need to be contiguous | |
pt_state = {k: v.contiguous() for k, v in pt_state.items()} | |
st_file.parent.mkdir(parents=True, exist_ok=True) | |
save_file(pt_state, str(st_file), metadata={"format": "pt"}) | |
# Check that both files are close in size | |
check_file_size(pt_file, st_file) | |
# Load safetensors state | |
st_state = load_file(str(st_file)) | |
for k in st_state: | |
pt_tensor = pt_state[k] | |
st_tensor = st_state[k] | |
if not torch.equal(pt_tensor, st_tensor): | |
raise RuntimeError(f"The output tensors do not match for key {k}") | |
def convert_files(pt_files: List[Path], st_files: List[Path]): | |
assert len(pt_files) == len(st_files) | |
executor = ThreadPoolExecutor(max_workers=5) | |
futures = [ | |
executor.submit(convert_file, pt_file=pt_file, st_file=st_file) | |
for pt_file, st_file in zip(pt_files, st_files) | |
] | |
# We do this instead of using tqdm because we want to parse the logs with the launcher | |
start_time = time.time() | |
for i, future in enumerate(concurrent.futures.as_completed(futures)): | |
elapsed = timedelta(seconds=int(time.time() - start_time)) | |
remaining = len(futures) - (i + 1) | |
eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0 | |
logger.info(f"Convert: [{i + 1}/{len(futures)}] -- ETA: {eta}") | |