Spaces:
Runtime error
Runtime error
File size: 8,547 Bytes
f4e8262 ae3239e a1c14f3 f4e8262 a1c14f3 ae3239e a1c14f3 ae3239e a1c14f3 f4e8262 ae3239e f4e8262 ae3239e f4e8262 ae3239e f4e8262 ae3239e 95688f8 ae3239e 95688f8 ae3239e 95688f8 ae3239e 95688f8 f4e8262 ae3239e f4e8262 ae3239e f4e8262 95688f8 f4e8262 95688f8 ae3239e 95688f8 ae3239e 95688f8 ae3239e 95688f8 ae3239e 95688f8 f4e8262 ae3239e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import json
import subprocess
from pathlib import Path
import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files
from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc
##########################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME
##########################################################
repo_id = "dog/kanye"
ckpt_name = None
##########################################################
# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
latest_id = sorted(
[
int(Path(x).stem.split("_")[1])
for x in list_repo_files(repo_id)
if x.startswith("G_") and x.endswith(".pth")
]
)[-1]
ckpt_name = f"G_{latest_id}.pth"
generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speakers = list(hparams.spk.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=None)
demucs_model = get_model(DEFAULT_MODEL)
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
wav, sr = librosa.load(filename, mono=False, sr=sr)
wav = torch.tensor(wav)
ref = wav.mean(0)
wav = (wav - ref.mean()) / ref.std()
sources = apply_model(
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
)[0]
sources = sources * ref.std() + ref.mean()
# We take just the vocals stem. I know the vocals for this model are at index -1
# If using different model, check model.sources.index('vocals')
vocal_wav = sources[-1]
# I did this because its the same normalization the so-vits model required
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
vocal_wav = vocal_wav.numpy()
vocal_wav = librosa.to_mono(vocal_wav)
vocal_wav = vocal_wav.T
instrumental_wav = sources[:-1].sum(0).numpy().T
return vocal_wav, instrumental_wav
def download_youtube_clip(
video_identifier,
start_time,
end_time,
output_filename,
num_attempts=5,
url_base="https://www.youtube.com/watch?v=",
quiet=False,
force=False,
):
output_path = Path(output_filename)
if output_path.exists():
if not force:
return output_path
else:
output_path.unlink()
quiet = "--quiet --no-warnings" if quiet else ""
command = f"""
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501
""".strip()
attempts = 0
while True:
try:
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError:
attempts += 1
if attempts == num_attempts:
return None
else:
break
if output_path.exists():
return output_path
else:
return None
def predict(
speaker,
audio,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "crepe",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
audio, _ = librosa.load(audio, sr=model.target_sample)
audio = model.infer_silence(
audio.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
return model.target_sample, audio
def predict_song_from_yt(
ytid,
start,
end,
speaker=speakers[0],
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: str = "dio",
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
):
original_track_filepath = download_youtube_clip(ytid, start, end, "track.wav", force=True)
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath, out_dir="./stems")
if transpose != 0:
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
cloned_vox = model.infer_silence(
vox_wav.astype(np.float32),
speaker=speaker,
transpose=transpose,
auto_predict_f0=auto_predict_f0,
cluster_infer_ratio=cluster_infer_ratio,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=absolute_thresh,
)
full_song = inst_wav + np.expand_dims(cloned_vox, 1)
return (model.target_sample, full_song), (model.target_sample, cloned_vox)
description = f"""
This app uses models trained with so-vits-svc-fork to clone your voice. Model currently being used is https://hf.co/{repo_id}.
To change the model being served, duplicate the space and update the `repo_id` in `app.py`.
""".strip()
article = """
<p style='text-align: center'>
<a href='https://github.com/voicepaw/so-vits-svc-fork' target='_blank'>Github Repo</a>
</p>
""".strip()
interface_mic = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Audio(type="filepath", source="microphone", label="Source Audio"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
],
outputs="audio",
title="Voice Cloning",
description=description,
article=article,
)
interface_file = gr.Interface(
predict,
inputs=[
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Audio(type="filepath", source="upload", label="Source Audio"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
],
outputs="audio",
title="Voice Cloning",
description=description,
article=article,
)
interface_yt = gr.Interface(
predict_song_from_yt,
inputs=[
"text",
gr.Number(value=0, label="Start Time (seconds)"),
gr.Number(value=15, label="End Time (seconds)"),
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
gr.Checkbox(False, label="Auto Predict F0"),
gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
],
outputs=["audio", "audio"],
title="Voice Cloning",
description=description,
article=article,
examples=[
["COz9lDCFHjw", 75, 90, speakers[0], 0, False, 0.0, 0.4, "dio"],
["Wvm5GuDfAas", 15, 30, speakers[0], 0, False, 0.0, 0.4, "crepe"],
],
)
interface = gr.TabbedInterface(
[interface_mic, interface_file, interface_yt],
["Clone From Mic", "Clone From File", "Clone Song From YouTube"],
)
if __name__ == "__main__":
interface.launch()
|