File size: 8,547 Bytes
f4e8262
ae3239e
a1c14f3
 
f4e8262
 
 
a1c14f3
ae3239e
 
a1c14f3
ae3239e
a1c14f3
 
f4e8262
ae3239e
f4e8262
 
 
ae3239e
 
f4e8262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3239e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e8262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae3239e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95688f8
ae3239e
 
95688f8
 
 
ae3239e
95688f8
 
 
 
 
ae3239e
95688f8
f4e8262
 
 
 
 
 
ae3239e
f4e8262
ae3239e
f4e8262
 
 
95688f8
 
f4e8262
95688f8
 
 
 
 
 
 
ae3239e
95688f8
ae3239e
95688f8
 
 
 
 
 
ae3239e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95688f8
ae3239e
 
95688f8
 
f4e8262
ae3239e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import json
import subprocess
from pathlib import Path

import gradio as gr
import librosa
import numpy as np
import torch
from demucs.apply import apply_model
from demucs.pretrained import DEFAULT_MODEL, get_model
from huggingface_hub import hf_hub_download, list_repo_files

from so_vits_svc_fork.hparams import HParams
from so_vits_svc_fork.inference.core import Svc


##########################################################
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME
##########################################################
repo_id = "dog/kanye"
ckpt_name = None
##########################################################

# Figure out the latest generator by taking highest value one.
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth
if ckpt_name is None:
    latest_id = sorted(
        [
            int(Path(x).stem.split("_")[1])
            for x in list_repo_files(repo_id)
            if x.startswith("G_") and x.endswith(".pth")
        ]
    )[-1]
    ckpt_name = f"G_{latest_id}.pth"

generator_path = hf_hub_download(repo_id, ckpt_name)
config_path = hf_hub_download(repo_id, "config.json")
hparams = HParams(**json.loads(Path(config_path).read_text()))
speakers = list(hparams.spk.keys())
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=None)
demucs_model = get_model(DEFAULT_MODEL)


def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):
    wav, sr = librosa.load(filename, mono=False, sr=sr)
    wav = torch.tensor(wav)
    ref = wav.mean(0)
    wav = (wav - ref.mean()) / ref.std()
    sources = apply_model(
        model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs
    )[0]
    sources = sources * ref.std() + ref.mean()
    # We take just the vocals stem. I know the vocals for this model are at index -1
    # If using different model, check model.sources.index('vocals')
    vocal_wav = sources[-1]
    # I did this because its the same normalization the so-vits model required
    vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1)
    vocal_wav = vocal_wav.numpy()
    vocal_wav = librosa.to_mono(vocal_wav)
    vocal_wav = vocal_wav.T
    instrumental_wav = sources[:-1].sum(0).numpy().T
    return vocal_wav, instrumental_wav


def download_youtube_clip(
    video_identifier,
    start_time,
    end_time,
    output_filename,
    num_attempts=5,
    url_base="https://www.youtube.com/watch?v=",
    quiet=False,
    force=False,
):
    output_path = Path(output_filename)
    if output_path.exists():
        if not force:
            return output_path
        else:
            output_path.unlink()

    quiet = "--quiet --no-warnings" if quiet else ""
    command = f"""
        yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}"  # noqa: E501
    """.strip()

    attempts = 0
    while True:
        try:
            _ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)
        except subprocess.CalledProcessError:
            attempts += 1
            if attempts == num_attempts:
                return None
        else:
            break

    if output_path.exists():
        return output_path
    else:
        return None


def predict(
    speaker,
    audio,
    transpose: int = 0,
    auto_predict_f0: bool = False,
    cluster_infer_ratio: float = 0,
    noise_scale: float = 0.4,
    f0_method: str = "crepe",
    db_thresh: int = -40,
    pad_seconds: float = 0.5,
    chunk_seconds: float = 0.5,
    absolute_thresh: bool = False,
):
    audio, _ = librosa.load(audio, sr=model.target_sample)
    audio = model.infer_silence(
        audio.astype(np.float32),
        speaker=speaker,
        transpose=transpose,
        auto_predict_f0=auto_predict_f0,
        cluster_infer_ratio=cluster_infer_ratio,
        noise_scale=noise_scale,
        f0_method=f0_method,
        db_thresh=db_thresh,
        pad_seconds=pad_seconds,
        chunk_seconds=chunk_seconds,
        absolute_thresh=absolute_thresh,
    )
    return model.target_sample, audio


def predict_song_from_yt(
    ytid,
    start,
    end,
    speaker=speakers[0],
    transpose: int = 0,
    auto_predict_f0: bool = False,
    cluster_infer_ratio: float = 0,
    noise_scale: float = 0.4,
    f0_method: str = "dio",
    db_thresh: int = -40,
    pad_seconds: float = 0.5,
    chunk_seconds: float = 0.5,
    absolute_thresh: bool = False,
):
    original_track_filepath = download_youtube_clip(ytid, start, end, "track.wav", force=True)
    vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath, out_dir="./stems")
    if transpose != 0:
        inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T
    cloned_vox = model.infer_silence(
        vox_wav.astype(np.float32),
        speaker=speaker,
        transpose=transpose,
        auto_predict_f0=auto_predict_f0,
        cluster_infer_ratio=cluster_infer_ratio,
        noise_scale=noise_scale,
        f0_method=f0_method,
        db_thresh=db_thresh,
        pad_seconds=pad_seconds,
        chunk_seconds=chunk_seconds,
        absolute_thresh=absolute_thresh,
    )
    full_song = inst_wav + np.expand_dims(cloned_vox, 1)
    return (model.target_sample, full_song), (model.target_sample, cloned_vox)


description = f"""
This app uses models trained with so-vits-svc-fork to clone your voice. Model currently being used is https://hf.co/{repo_id}.
To change the model being served, duplicate the space and update the `repo_id` in `app.py`.
""".strip()

article = """
<p style='text-align: center'>
    <a href='https://github.com/voicepaw/so-vits-svc-fork' target='_blank'>Github Repo</a>
</p>
""".strip()


interface_mic = gr.Interface(
    predict,
    inputs=[
        gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
        gr.Audio(type="filepath", source="microphone", label="Source Audio"),
        gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
        gr.Checkbox(False, label="Auto Predict F0"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
        gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
        gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
    ],
    outputs="audio",
    title="Voice Cloning",
    description=description,
    article=article,
)
interface_file = gr.Interface(
    predict,
    inputs=[
        gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
        gr.Audio(type="filepath", source="upload", label="Source Audio"),
        gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
        gr.Checkbox(False, label="Auto Predict F0"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
        gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
        gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
    ],
    outputs="audio",
    title="Voice Cloning",
    description=description,
    article=article,
)
interface_yt = gr.Interface(
    predict_song_from_yt,
    inputs=[
        "text",
        gr.Number(value=0, label="Start Time (seconds)"),
        gr.Number(value=15, label="End Time (seconds)"),
        gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"),
        gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"),
        gr.Checkbox(False, label="Auto Predict F0"),
        gr.Slider(0.0, 1.0, value=0.0, step=0.1, label="cluster infer ratio"),
        gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"),
        gr.Dropdown(choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], value="dio", label="f0 method"),
    ],
    outputs=["audio", "audio"],
    title="Voice Cloning",
    description=description,
    article=article,
    examples=[
        ["COz9lDCFHjw", 75, 90, speakers[0], 0, False, 0.0, 0.4, "dio"],
        ["Wvm5GuDfAas", 15, 30, speakers[0], 0, False, 0.0, 0.4, "crepe"],
    ],
)
interface = gr.TabbedInterface(
    [interface_mic, interface_file, interface_yt],
    ["Clone From Mic", "Clone From File", "Clone Song From YouTube"],
)


if __name__ == "__main__":
    interface.launch()