Spaces:
Runtime error
Runtime error
import json | |
import os | |
import subprocess | |
from pathlib import Path | |
import gradio as gr | |
import librosa | |
import numpy as np | |
import torch | |
from demucs.apply import apply_model | |
from demucs.pretrained import DEFAULT_MODEL, get_model | |
from huggingface_hub import hf_hub_download, list_repo_files | |
from so_vits_svc_fork.hparams import HParams | |
from so_vits_svc_fork.inference.core import Svc | |
################################################################### | |
# REPLACE THESE VALUES TO CHANGE THE MODEL REPO/CKPT NAME/SETTINGS | |
################################################################### | |
# The Hugging Face Hub repo ID | |
repo_id = "dog/kanye" | |
# If None, Uses latest ckpt in the repo | |
ckpt_name = None | |
# If None, Uses "kmeans.pt" if it exists in the repo | |
cluster_model_name = None | |
# Set the default f0 type to use - use the one it was trained on. | |
# The default for so-vits-svc-fork is "dio". | |
# Options: "crepe", "crepe-tiny", "parselmouth", "dio", "harvest" | |
default_f0_method = "crepe" | |
# The default ratio of cluster inference to SVC inference. | |
# If cluster_model_name is not found in the repo, this is set to 0. | |
default_cluster_infer_ratio = 0.5 | |
# Limit on duration of audio at inference time. increase if you can | |
# In this parent app, we set the limit with an env var to 30 seconds | |
# If you didnt set env var + you go OOM try changing 9e9 to <=300ish | |
duration_limit = int(os.environ.get("MAX_DURATION_SECONDS", 9e9)) | |
################################################################### | |
# Figure out the latest generator by taking highest value one. | |
# Ex. if the repo has: G_0.pth, G_100.pth, G_200.pth, we'd use G_200.pth | |
if ckpt_name is None: | |
latest_id = sorted( | |
[ | |
int(Path(x).stem.split("_")[1]) | |
for x in list_repo_files(repo_id) | |
if x.startswith("G_") and x.endswith(".pth") | |
] | |
)[-1] | |
ckpt_name = f"G_{latest_id}.pth" | |
cluster_model_name = cluster_model_name or "kmeans.pt" | |
if cluster_model_name in list_repo_files(repo_id): | |
print(f"Found Cluster model - Downloading {cluster_model_name} from {repo_id}") | |
cluster_model_path = hf_hub_download(repo_id, cluster_model_name) | |
else: | |
print(f"Could not find {cluster_model_name} in {repo_id}. Using None") | |
cluster_model_path = None | |
default_cluster_infer_ratio = default_cluster_infer_ratio if cluster_model_path else 0 | |
generator_path = hf_hub_download(repo_id, ckpt_name) | |
config_path = hf_hub_download(repo_id, "config.json") | |
hparams = HParams(**json.loads(Path(config_path).read_text())) | |
speakers = list(hparams.spk.keys()) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Svc(net_g_path=generator_path, config_path=config_path, device=device, cluster_model_path=cluster_model_path) | |
demucs_model = get_model(DEFAULT_MODEL) | |
def extract_vocal_demucs(model, filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0): | |
wav, sr = librosa.load(filename, mono=False, sr=sr) | |
wav = torch.tensor(wav) | |
ref = wav.mean(0) | |
wav = (wav - ref.mean()) / ref.std() | |
sources = apply_model( | |
model, wav[None], device=device, shifts=shifts, split=split, overlap=overlap, progress=True, num_workers=jobs | |
)[0] | |
sources = sources * ref.std() + ref.mean() | |
# We take just the vocals stem. I know the vocals for this model are at index -1 | |
# If using different model, check model.sources.index('vocals') | |
vocal_wav = sources[-1] | |
# I did this because its the same normalization the so-vits model required | |
vocal_wav = vocal_wav / max(1.01 * vocal_wav.abs().max(), 1) | |
vocal_wav = vocal_wav.numpy() | |
vocal_wav = librosa.to_mono(vocal_wav) | |
vocal_wav = vocal_wav.T | |
instrumental_wav = sources[:-1].sum(0).numpy().T | |
return vocal_wav, instrumental_wav | |
def download_youtube_clip( | |
video_identifier, | |
start_time, | |
end_time, | |
output_filename, | |
num_attempts=5, | |
url_base="https://www.youtube.com/watch?v=", | |
quiet=False, | |
force=False, | |
): | |
output_path = Path(output_filename) | |
if output_path.exists(): | |
if not force: | |
return output_path | |
else: | |
output_path.unlink() | |
quiet = "--quiet --no-warnings" if quiet else "" | |
command = f""" | |
yt-dlp {quiet} -x --audio-format wav -f bestaudio -o "{output_filename}" --download-sections "*{start_time}-{end_time}" "{url_base}{video_identifier}" # noqa: E501 | |
""".strip() | |
attempts = 0 | |
while True: | |
try: | |
_ = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT) | |
except subprocess.CalledProcessError: | |
attempts += 1 | |
if attempts == num_attempts: | |
return None | |
else: | |
break | |
if output_path.exists(): | |
return output_path | |
else: | |
return None | |
def predict( | |
speaker, | |
audio, | |
transpose: int = 0, | |
auto_predict_f0: bool = False, | |
cluster_infer_ratio: float = 0, | |
noise_scale: float = 0.4, | |
f0_method: str = "crepe", | |
db_thresh: int = -40, | |
pad_seconds: float = 0.5, | |
chunk_seconds: float = 0.5, | |
absolute_thresh: bool = False, | |
): | |
audio, _ = librosa.load(audio, sr=model.target_sample, duration=duration_limit) | |
audio = model.infer_silence( | |
audio.astype(np.float32), | |
speaker=speaker, | |
transpose=transpose, | |
auto_predict_f0=auto_predict_f0, | |
cluster_infer_ratio=cluster_infer_ratio, | |
noise_scale=noise_scale, | |
f0_method=f0_method, | |
db_thresh=db_thresh, | |
pad_seconds=pad_seconds, | |
chunk_seconds=chunk_seconds, | |
absolute_thresh=absolute_thresh, | |
) | |
return model.target_sample, audio | |
def predict_song_from_yt( | |
ytid_or_url, | |
start, | |
end, | |
speaker=speakers[0], | |
transpose: int = 0, | |
auto_predict_f0: bool = False, | |
cluster_infer_ratio: float = 0, | |
noise_scale: float = 0.4, | |
f0_method: str = "dio", | |
db_thresh: int = -40, | |
pad_seconds: float = 0.5, | |
chunk_seconds: float = 0.5, | |
absolute_thresh: bool = False, | |
): | |
end = min(start + duration_limit, end) | |
original_track_filepath = download_youtube_clip( | |
ytid_or_url, | |
start, | |
end, | |
"track.wav", | |
force=True, | |
url_base="" if ytid_or_url.startswith("http") else "https://www.youtube.com/watch?v=", | |
) | |
vox_wav, inst_wav = extract_vocal_demucs(demucs_model, original_track_filepath) | |
if transpose != 0: | |
inst_wav = librosa.effects.pitch_shift(inst_wav.T, sr=model.target_sample, n_steps=transpose).T | |
cloned_vox = model.infer_silence( | |
vox_wav.astype(np.float32), | |
speaker=speaker, | |
transpose=transpose, | |
auto_predict_f0=auto_predict_f0, | |
cluster_infer_ratio=cluster_infer_ratio, | |
noise_scale=noise_scale, | |
f0_method=f0_method, | |
db_thresh=db_thresh, | |
pad_seconds=pad_seconds, | |
chunk_seconds=chunk_seconds, | |
absolute_thresh=absolute_thresh, | |
) | |
full_song = inst_wav + np.expand_dims(cloned_vox, 1) | |
return (model.target_sample, full_song), (model.target_sample, cloned_vox) | |
SPACE_ID = "nateraw/voice-cloning" | |
description = f""" | |
# Attention - This Space may be slow in the shared UI if there is a long queue. To speed it up, you can duplicate and use it with a paid private T4 GPU. | |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center> | |
#### This app uses models trained with [so-vits-svc-fork](https://github.com/voicepaw/so-vits-svc-fork) to clone a voice. Model currently being used is https://hf.co/{repo_id}. To change the model being served, duplicate the space and update the `repo_id`/other settings in `app.py`. | |
#### Train Your Own: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/nateraw/voice-cloning/blob/main/training_so_vits_svc_fork.ipynb) | |
""".strip() | |
article = """ | |
<p style='text-align: center'> | |
<a href='https://github.com/voicepaw/so-vits-svc-fork' target='_blank'>Github Repo</a> | |
</p> | |
""".strip() | |
interface_mic = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"), | |
gr.Audio(type="filepath", source="microphone", label="Source Audio"), | |
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"), | |
gr.Checkbox(False, label="Auto Predict F0"), | |
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"), | |
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"), | |
gr.Dropdown( | |
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], | |
value=default_f0_method, | |
label="f0 method", | |
), | |
], | |
outputs="audio", | |
title="Voice Cloning", | |
description=description, | |
article=article, | |
) | |
interface_file = gr.Interface( | |
predict, | |
inputs=[ | |
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"), | |
gr.Audio(type="filepath", source="upload", label="Source Audio"), | |
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"), | |
gr.Checkbox(False, label="Auto Predict F0"), | |
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"), | |
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"), | |
gr.Dropdown( | |
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], | |
value=default_f0_method, | |
label="f0 method", | |
), | |
], | |
outputs="audio", | |
title="Voice Cloning", | |
description=description, | |
article=article, | |
) | |
interface_yt = gr.Interface( | |
predict_song_from_yt, | |
inputs=[ | |
gr.Textbox( | |
label="YouTube URL or ID", info="A YouTube URL (or ID) to a song on YouTube you want to clone from" | |
), | |
gr.Number(value=0, label="Start Time (seconds)"), | |
gr.Number(value=15, label="End Time (seconds)"), | |
gr.Dropdown(speakers, value=speakers[0], label="Target Speaker"), | |
gr.Slider(-12, 12, value=0, step=1, label="Transpose (Semitones)"), | |
gr.Checkbox(False, label="Auto Predict F0"), | |
gr.Slider(0.0, 1.0, value=default_cluster_infer_ratio, step=0.1, label="cluster infer ratio"), | |
gr.Slider(0.0, 1.0, value=0.4, step=0.1, label="noise scale"), | |
gr.Dropdown( | |
choices=["crepe", "crepe-tiny", "parselmouth", "dio", "harvest"], | |
value=default_f0_method, | |
label="f0 method", | |
), | |
], | |
outputs=["audio", "audio"], | |
title="Voice Cloning", | |
description=description, | |
article=article, | |
examples=[ | |
["COz9lDCFHjw", 75, 90, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method], | |
["dQw4w9WgXcQ", 21, 35, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method], | |
["Wvm5GuDfAas", 15, 30, speakers[0], 0, False, default_cluster_infer_ratio, 0.4, default_f0_method], | |
], | |
) | |
interface = gr.TabbedInterface( | |
[interface_mic, interface_file, interface_yt], | |
["Clone From Mic", "Clone From File", "Clone Song From YouTube"], | |
) | |
if __name__ == "__main__": | |
interface.launch() | |