File size: 13,550 Bytes
d0864a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
import torch
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import sys
import requests
from image_similarity_measures.evaluate import evaluation
from PIL import Image
from huggingface_hub import from_pretrained_keras
from math import sqrt, ceil
import numpy as np

modelieo=[
 'nathanReitinger/MNIST-diffusion',
 'nathanReitinger/MNIST-diffusion-oneImage',
 'nathanReitinger/MNIST-GAN',
 'nathanReitinger/MNIST-GAN-noDropout'
  ]

def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
  (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
  train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
  train_images = (train_images - 127.5) / 127.5	# Normalize the images to [-1, 1]

  print("how long to hunt", hunting_time_limit)
  if hunting_time_limit == None:
    hunting_time_limit = 2

  lowest_score = 10000
  lowest_image = None
  lowest_image_path = ''

  start = time.time()

  for i in range(len(train_labels)):
    # print(i)
    if train_labels[i] == gen_label:

        ###
        # get a real image (of correct number)
        ###

        # print(i)
        to_check = train_images[i]
        fig = plt.figure(figsize=(1, 1))
        plt.subplot(1, 1, 0+1)
        plt.imshow(to_check, cmap='gray')
        plt.axis('off')
        plt.savefig(file_path + 'real_deal.png')
        plt.close()

        # baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
        # print("---")

        ###
        # check how close that real training data is to generated number
        ###
        results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
        if results['rmse'] < lowest_score:
          lowest_score = results['rmse']
          lowest_image = to_check

          to_save = train_images[i]
          fig = plt.figure(figsize=(1, 1))
          plt.subplot(1, 1, 0+1)
          plt.imshow(to_save, cmap='gray')
          plt.axis('off')
          plt.savefig(file_path + 'keeper.png')
          plt.close()
          lowest_image_path = file_path + 'keeper.png'

          print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
    now = time.time()
    if now-start > hunting_time_limit:
      print(str(now-start) +  "s")
      return lowest_image_path
                
  return lowest_image_path


def digit_recognition(filename):

  API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
  special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-'
  is_escaped = special_string.replace("-", '')
  bear = "Bearer " + is_escaped
  headers = {"Authorization": bear}
  # get a prediction on what number this is
  def query(filename):
    with open(filename, "rb") as f:
      data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

  # use latest model to generate a new image, return path
  ret = False 
  output = None
  while ret == False:
    output = query(filename + 'generated_image.png')
    if 'error' in output:
      time.sleep(10)
      ret = False 
    else:
      ret = True
  print(output)

  low_score_log = ''
  this_label_for_this_image = int(output[0]['label'])
  return {'full': output, 'number': this_label_for_this_image}


def get_other(original_image, hunting_time_limit):
  RANDO = str(time.time())
  file_path = 'tester/' + 'generation' + "/" + RANDO + '/'
  os.makedirs(file_path)
  fig = plt.figure(figsize=(1, 1))
  plt.subplot(1, 1, 0+1)
  plt.imshow(original_image, cmap='gray')
  plt.axis('off')
  plt.savefig(file_path + 'generated_image.png')
  plt.close()
  print('[+] done saving generation')
  print("[-] what digit is this")
  ret = digit_recognition(file_path)
  print(ret['full'])
  print(ret['number'])
  print("[+]", ret['number'])
  print("[-] show some most similar numbers")
  if ret["full"][0]['score'] <= 0.90:
    print("[!] error in image digit recognition, likely to not find a similar score")
    sys.exit()
  gen_filepath = file_path + 'generated_image.png'
  gen_label = ret['number']
  ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit)
  print("[+] done sims")
  # get the file-Path
  return (file_path + 'generated_image.png', ret_sims)

def generate_and_save_images(model):
  noise_dim = 100
  num_examples_to_generate = 1
  seed = tf.random.normal([num_examples_to_generate, noise_dim])

  # print(seed)

  n_samples = 1
  # Notice `training` is set to False.
  # This is so all layers run in inference mode (batchnorm).
  examples = model(seed, training=False)
  examples = examples * 255.0
  size = ceil(sqrt(n_samples))
  digit_images = np.zeros((28*size, 28*size), dtype=float)
  n = 0
  for i in range(size):
      for j in range(size):
          if n == n_samples:
              break
          digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
          n += 1
  digit_images = (digit_images/127.5) -1 
  return digit_images

def TextToImage(Prompt,inference_steps, model):
  model_id = model
  if 'GAN' in model_id:
    print("do something else")
    model = from_pretrained_keras(model)
    image = generate_and_save_images(model)
  else:
    pipe = DiffusionPipeline.from_pretrained(model_id)
    the_randomness = int(str(time.time())[-1])
    print('seed', the_randomness)
    image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0]

#   pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
#   pipe = pipe.to("cpu")

  prompt = Prompt
  print(prompt)
  hunting_time_limit = None
  if prompt.isnumeric():
    hunting_time_limit = abs(int(prompt))

  original_image, other_images = get_other(image, hunting_time_limit)
  ai_gen = Image.open(open(original_image, 'rb'))
  training_data = Image.open(open(other_images, 'rb'))
  return [ai_gen, training_data]


import gradio as gr
interface = gr.Interface(fn=TextToImage, 
                        inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
                        outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"), 
                        # css="#output_image{width: 256px !important; height: 256px !important;}",
                        title='Unconditional Image Generation')

interface.launch()





# import tensorflow as tf
# from diffusers import DiffusionPipeline
# import spaces
# # import torch
# import PIL.Image
# from PIL import Image
# from torch.autograd import Variable
# import gradio as gr
# import gradio.components as grc
# import numpy as np
# from huggingface_hub import from_pretrained_keras
# from image_similarity_measures.evaluate import evaluation
# import keras
# import time
# import requests
# import matplotlib.pyplot as plt
# import os 
# from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
# from gradio_imageslider import ImageSlider

# # os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'

# # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']


# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# # device = "cuda" if torch.cuda.is_available() else "cpu"
# # pipeline = pipeline.to(device=device)

# # @spaces.GPU
# # def predict(steps, seed):
# #		 print("HI")
# #		 generator = torch.manual_seed(seed)
# #		 for i in range(1,steps):
# #				 yield pipeline(generator=generator, num_inference_steps=i).images[0]

# # gr.Interface(
# #		 predict,
# #		 inputs=[
# #				 grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
# #				 grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
# #		 ],
# #		 outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
# #		 css="#output_image{width: 256px !important; height: 256px !important;}",
# #		 title="Model Problems: Infringing on MNIST!",
# #		 description="Opening the black box.",
# # ).queue().launch()


# from diffusers import StableDiffusionPipeline
# import torch


# modellist=['nathanReitinger/MNIST-diffusion-oneImage',
# 	'nathanReitinger/MNIST-diffusion',
# #	'nathanReitinger/MNIST-GAN', 
# #	'nathanReitinger/MNIST-GAN-noDropout'
#  ]

# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# # device = "cuda" if torch.cuda.is_available() else "cpu"
# # pipeline = pipeline.to(device=device)


# def getModel(model):
# 	model_id = model

# 	(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
# 	RANDO = str(time.time())
# 	file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
# 	os.makedirs(file_path)
# 	train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
# 	train_images = (train_images - 127.5) / 127.5	# Normalize the images to [-1, 1]

# 	print(model_id)
# 	image = None
# 	if 'diffusion' in model_id:
# 		pipe = DiffusionPipeline.from_pretrained(model_id)
# 		pipe = pipe.to("cpu")
# 		image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
# 	else:
# 		pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
# 		pipe = pipe.to("cpu")
# 		test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
# 		image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]

# 	########################################### let's save this image for comparison to others
# 	fig = plt.figure(figsize=(1, 1))
# 	plt.subplot(1, 1, 0+1)
# 	plt.imshow(image, cmap='gray')
# 	plt.axis('off')
# 	plt.savefig(file_path + 'generated_image.png')
# 	plt.close()

# 	API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"

# 	# get a prediction on what number this is
# 	def query(filename):
# 		with open(filename, "rb") as f:
# 			data = f.read()
# 		response = requests.post(API_URL, data=data)
# 		return response.json()

# 	# use latest model to generate a new image, return path
# 	ret = False 
# 	output = None
# 	while ret == False:
# 		output = query(file_path + 'generated_image.png')
# 		if 'error' in output:
# 			time.sleep(10)
# 			ret = False 
# 		else:
# 			ret = True
# 	print(output)

# 	low_score_log = ''
# 	this_label_for_this_image = int(output[0]['label'])
# 	low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
# 	print("===================")

# 	lowest_score = 10000
# 	lowest_image = None

# 	for i in range(len(train_labels)):
# 		# print(i)
# 		if train_labels[i] == this_label_for_this_image:

# 				###
# 				# get a real image (of correct number)
# 				###

# 				# print(i)
# 				to_check = train_images[i]
# 				fig = plt.figure(figsize=(1, 1))
# 				plt.subplot(1, 1, 0+1)
# 				plt.imshow(to_check, cmap='gray')
# 				plt.axis('off')
# 				plt.savefig(file_path + 'real_deal.png')
# 				plt.close()

# 				# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
# 				# print("---")

# 				###
# 				# check how close that real training data is to generated number
# 				###
# 				results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
# 				if results['rmse'] < lowest_score:

# 					lowest_score = results['rmse']
# 					lowest_image = to_check

# 					# image1 = np.array(Image.open(file_path + 'real_deal.png'))
# 					# image2 = np.array(Image.open(file_path + 'generated_image.png'))
# 					# img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
# 					# img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
# 					# img1 = Variable( img1,	requires_grad=False)
# 					# img2 = Variable( img2,	requires_grad=True)
# 					# ssim_score = ssim(img1, img2).item()

# 					# # sys.exit()
# 					# # l2 = distance.euclidean(image1, image2)

# 					# low_score_log += 'rmse score:' + str(lowest_score) + "\n"
# 					# low_score_log += 'ssim score:' + str(ssim_score) + "\n"
# 					# low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"

# 					# low_score_log += "---------\n"
					
# 					# print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')

# 					# fig = plt.figure(figsize=(1, 1))
# 					# plt.subplot(1, 1, 0+1)
# 					# plt.imshow(to_check, cmap='gray')
# 					# plt.axis('off')
# 					# plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
# 					# plt.close()

								
# 	# f = open(file_path + "score_log.txt", "w+")
# 	# f.write(low_score_log)
# 	# f.close()

# 	print("Done!")


# 	############################################ return image that you just generated
# 	return [image, lowest_image]


# import gradio as gr
# output = "image"
# interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output,  title='Model Problems (infringement)') # outputs="image",
# interface.launch(debug=True)