Spaces:
Runtime error
Runtime error
File size: 13,550 Bytes
d0864a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
# notes https://huggingface.co/spaces/Joeythemonster/Text-To-image-AllModels/blob/main/app.py
from diffusers import StableDiffusionPipeline
from diffusers import DiffusionPipeline
import torch
import time
import matplotlib.pyplot as plt
import tensorflow as tf
import os
import sys
import requests
from image_similarity_measures.evaluate import evaluation
from PIL import Image
from huggingface_hub import from_pretrained_keras
from math import sqrt, ceil
import numpy as np
modelieo=[
'nathanReitinger/MNIST-diffusion',
'nathanReitinger/MNIST-diffusion-oneImage',
'nathanReitinger/MNIST-GAN',
'nathanReitinger/MNIST-GAN-noDropout'
]
def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
print("how long to hunt", hunting_time_limit)
if hunting_time_limit == None:
hunting_time_limit = 2
lowest_score = 10000
lowest_image = None
lowest_image_path = ''
start = time.time()
for i in range(len(train_labels)):
# print(i)
if train_labels[i] == gen_label:
###
# get a real image (of correct number)
###
# print(i)
to_check = train_images[i]
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(to_check, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'real_deal.png')
plt.close()
# baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
# print("---")
###
# check how close that real training data is to generated number
###
results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
if results['rmse'] < lowest_score:
lowest_score = results['rmse']
lowest_image = to_check
to_save = train_images[i]
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(to_save, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'keeper.png')
plt.close()
lowest_image_path = file_path + 'keeper.png'
print(lowest_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
now = time.time()
if now-start > hunting_time_limit:
print(str(now-start) + "s")
return lowest_image_path
return lowest_image_path
def digit_recognition(filename):
API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
special_string = '-h-f-_-RT-U-J-E-M-Pb-GC-c-i-v-sji-bMsQmxuh-x-h-C-W-B-F-W-z-Gv-'
is_escaped = special_string.replace("-", '')
bear = "Bearer " + is_escaped
headers = {"Authorization": bear}
# get a prediction on what number this is
def query(filename):
with open(filename, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
return response.json()
# use latest model to generate a new image, return path
ret = False
output = None
while ret == False:
output = query(filename + 'generated_image.png')
if 'error' in output:
time.sleep(10)
ret = False
else:
ret = True
print(output)
low_score_log = ''
this_label_for_this_image = int(output[0]['label'])
return {'full': output, 'number': this_label_for_this_image}
def get_other(original_image, hunting_time_limit):
RANDO = str(time.time())
file_path = 'tester/' + 'generation' + "/" + RANDO + '/'
os.makedirs(file_path)
fig = plt.figure(figsize=(1, 1))
plt.subplot(1, 1, 0+1)
plt.imshow(original_image, cmap='gray')
plt.axis('off')
plt.savefig(file_path + 'generated_image.png')
plt.close()
print('[+] done saving generation')
print("[-] what digit is this")
ret = digit_recognition(file_path)
print(ret['full'])
print(ret['number'])
print("[+]", ret['number'])
print("[-] show some most similar numbers")
if ret["full"][0]['score'] <= 0.90:
print("[!] error in image digit recognition, likely to not find a similar score")
sys.exit()
gen_filepath = file_path + 'generated_image.png'
gen_label = ret['number']
ret_sims = get_sims(gen_filepath, gen_label, file_path, hunting_time_limit)
print("[+] done sims")
# get the file-Path
return (file_path + 'generated_image.png', ret_sims)
def generate_and_save_images(model):
noise_dim = 100
num_examples_to_generate = 1
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# print(seed)
n_samples = 1
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
examples = model(seed, training=False)
examples = examples * 255.0
size = ceil(sqrt(n_samples))
digit_images = np.zeros((28*size, 28*size), dtype=float)
n = 0
for i in range(size):
for j in range(size):
if n == n_samples:
break
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
n += 1
digit_images = (digit_images/127.5) -1
return digit_images
def TextToImage(Prompt,inference_steps, model):
model_id = model
if 'GAN' in model_id:
print("do something else")
model = from_pretrained_keras(model)
image = generate_and_save_images(model)
else:
pipe = DiffusionPipeline.from_pretrained(model_id)
the_randomness = int(str(time.time())[-1])
print('seed', the_randomness)
image = pipe(generator= torch.manual_seed(the_randomness), num_inference_steps=inference_steps).images[0]
# pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
# pipe = pipe.to("cpu")
prompt = Prompt
print(prompt)
hunting_time_limit = None
if prompt.isnumeric():
hunting_time_limit = abs(int(prompt))
original_image, other_images = get_other(image, hunting_time_limit)
ai_gen = Image.open(open(original_image, 'rb'))
training_data = Image.open(open(other_images, 'rb'))
return [ai_gen, training_data]
import gradio as gr
interface = gr.Interface(fn=TextToImage,
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
# css="#output_image{width: 256px !important; height: 256px !important;}",
title='Unconditional Image Generation')
interface.launch()
# import tensorflow as tf
# from diffusers import DiffusionPipeline
# import spaces
# # import torch
# import PIL.Image
# from PIL import Image
# from torch.autograd import Variable
# import gradio as gr
# import gradio.components as grc
# import numpy as np
# from huggingface_hub import from_pretrained_keras
# from image_similarity_measures.evaluate import evaluation
# import keras
# import time
# import requests
# import matplotlib.pyplot as plt
# import os
# from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
# from gradio_imageslider import ImageSlider
# # os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
# # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# # device = "cuda" if torch.cuda.is_available() else "cpu"
# # pipeline = pipeline.to(device=device)
# # @spaces.GPU
# # def predict(steps, seed):
# # print("HI")
# # generator = torch.manual_seed(seed)
# # for i in range(1,steps):
# # yield pipeline(generator=generator, num_inference_steps=i).images[0]
# # gr.Interface(
# # predict,
# # inputs=[
# # grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
# # grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
# # ],
# # outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
# # css="#output_image{width: 256px !important; height: 256px !important;}",
# # title="Model Problems: Infringing on MNIST!",
# # description="Opening the black box.",
# # ).queue().launch()
# from diffusers import StableDiffusionPipeline
# import torch
# modellist=['nathanReitinger/MNIST-diffusion-oneImage',
# 'nathanReitinger/MNIST-diffusion',
# # 'nathanReitinger/MNIST-GAN',
# # 'nathanReitinger/MNIST-GAN-noDropout'
# ]
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# # device = "cuda" if torch.cuda.is_available() else "cpu"
# # pipeline = pipeline.to(device=device)
# def getModel(model):
# model_id = model
# (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
# RANDO = str(time.time())
# file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
# os.makedirs(file_path)
# train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
# train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
# print(model_id)
# image = None
# if 'diffusion' in model_id:
# pipe = DiffusionPipeline.from_pretrained(model_id)
# pipe = pipe.to("cpu")
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
# else:
# pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
# pipe = pipe.to("cpu")
# test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
# ########################################### let's save this image for comparison to others
# fig = plt.figure(figsize=(1, 1))
# plt.subplot(1, 1, 0+1)
# plt.imshow(image, cmap='gray')
# plt.axis('off')
# plt.savefig(file_path + 'generated_image.png')
# plt.close()
# API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
# # get a prediction on what number this is
# def query(filename):
# with open(filename, "rb") as f:
# data = f.read()
# response = requests.post(API_URL, data=data)
# return response.json()
# # use latest model to generate a new image, return path
# ret = False
# output = None
# while ret == False:
# output = query(file_path + 'generated_image.png')
# if 'error' in output:
# time.sleep(10)
# ret = False
# else:
# ret = True
# print(output)
# low_score_log = ''
# this_label_for_this_image = int(output[0]['label'])
# low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
# print("===================")
# lowest_score = 10000
# lowest_image = None
# for i in range(len(train_labels)):
# # print(i)
# if train_labels[i] == this_label_for_this_image:
# ###
# # get a real image (of correct number)
# ###
# # print(i)
# to_check = train_images[i]
# fig = plt.figure(figsize=(1, 1))
# plt.subplot(1, 1, 0+1)
# plt.imshow(to_check, cmap='gray')
# plt.axis('off')
# plt.savefig(file_path + 'real_deal.png')
# plt.close()
# # baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
# # print("---")
# ###
# # check how close that real training data is to generated number
# ###
# results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
# if results['rmse'] < lowest_score:
# lowest_score = results['rmse']
# lowest_image = to_check
# # image1 = np.array(Image.open(file_path + 'real_deal.png'))
# # image2 = np.array(Image.open(file_path + 'generated_image.png'))
# # img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
# # img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
# # img1 = Variable( img1, requires_grad=False)
# # img2 = Variable( img2, requires_grad=True)
# # ssim_score = ssim(img1, img2).item()
# # # sys.exit()
# # # l2 = distance.euclidean(image1, image2)
# # low_score_log += 'rmse score:' + str(lowest_score) + "\n"
# # low_score_log += 'ssim score:' + str(ssim_score) + "\n"
# # low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
# # low_score_log += "---------\n"
# # print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
# # fig = plt.figure(figsize=(1, 1))
# # plt.subplot(1, 1, 0+1)
# # plt.imshow(to_check, cmap='gray')
# # plt.axis('off')
# # plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
# # plt.close()
# # f = open(file_path + "score_log.txt", "w+")
# # f.write(low_score_log)
# # f.close()
# print("Done!")
# ############################################ return image that you just generated
# return [image, lowest_image]
# import gradio as gr
# output = "image"
# interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output, title='Model Problems (infringement)') # outputs="image",
# interface.launch(debug=True)
|