modelProblems / app.py
nreitinger's picture
modelProblems
5138bba
raw
history blame
1.49 kB
from diffusers import DiffusionPipeline
import spaces
import torch
import PIL.Image
import gradio as gr
import gradio.components as grc
import numpy as np
import time
# models=[
# "runwayml/stable-diffusion-v1-5",
# "claudfuen/photorealistic-fuen-v1",
# "nitrosocke/redshift-diffusion",
# ]
# model_box=[
# gr.Interface.load(f"models/{models[0]}",live=True,preprocess=True),
# gr.Interface.load(f"models/{models[1]}",live=True,preprocess=True),
# gr.Interface.load(f"models/{models[2]}",live=True,preprocess=True),
# ]
# current_model=model_box[0]
# pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipeline = pipeline.to(device=device)
@spaces.GPU
def predict(steps, seed):
generator = torch.manual_seed(seed)
for i in range(1,steps):
yield pipeline(generator=generator, num_inference_steps=i).images[0]
gr.Interface(
predict,
inputs=[
grc.Slider(1, 1000, label='Inference Steps', value=1000, step=1),
grc.Slider(0, 2147483647, label='Seed', value=69420, step=1),
],
outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
css="#output_image{width: 256px !important; height: 256px !important;}",
title="Unconditional MNIST -- infringing (trained on one image)!",
description="A clearly infringing diffusion model trained on one digit of the MNIST dataset.",
).queue().launch()