Spaces:
Runtime error
Runtime error
temp-9384289
commited on
Commit
·
1592448
1
Parent(s):
004e980
fancy
Browse files- app.py +32 -211
- requirements.txt +0 -13
- tester/generation/1714450880.962815/generated_image.png +0 -0
- tester/generation/1714450880.962815/keeper.png +0 -0
- tester/generation/1714450880.962815/real_deal.png +0 -0
- tester/generation/1714450908.324796/generated_image.png +0 -0
- tester/generation/1714450908.324796/keeper.png +0 -0
- tester/generation/1714450908.324796/real_deal.png +0 -0
- tester/generation/1714450979.7165031/generated_image.png +0 -0
- tester/generation/1714450979.7165031/keeper.png +0 -0
- tester/generation/1714450979.7165031/real_deal.png +0 -0
- tester/generation/1714451016.7755892/generated_image.png +0 -0
- tester/generation/1714451016.7755892/keeper.png +0 -0
- tester/generation/1714451016.7755892/real_deal.png +0 -0
- tester/generation/1714451444.908609/generated_image.png +0 -0
- tester/generation/1714451444.908609/keeper.png +0 -0
- tester/generation/1714451444.908609/real_deal.png +0 -0
- tester/generation/1714451512.23043/generated_image.png +0 -0
- tester/generation/1714451512.23043/keeper.png +0 -0
- tester/generation/1714451512.23043/real_deal.png +0 -0
- tester/generation/1714451550.030316/generated_image.png +0 -0
- tester/generation/1714451550.030316/keeper.png +0 -0
- tester/generation/1714451550.030316/real_deal.png +0 -0
- tester/generation/1714451807.0931032/generated_image.png +0 -0
- tester/generation/1714451807.0931032/keeper.png +0 -0
- tester/generation/1714451807.0931032/real_deal.png +0 -0
- tester/generation/1714451841.973258/generated_image.png +0 -0
- tester/generation/1714451841.973258/keeper.png +0 -0
- tester/generation/1714451841.973258/real_deal.png +0 -0
- tester/generation/1714451921.654916/generated_image.png +0 -0
- tester/generation/1714451921.654916/keeper.png +0 -0
- tester/generation/1714451921.654916/real_deal.png +0 -0
- tester/generation/1714451971.985685/generated_image.png +0 -0
- tester/generation/1714451971.985685/keeper.png +0 -0
- tester/generation/1714451971.985685/real_deal.png +0 -0
- tester/generation/1714452167.314516/generated_image.png +0 -0
- tester/generation/1714452167.314516/keeper.png +0 -0
- tester/generation/1714452167.314516/real_deal.png +0 -0
- tester/generation/1714452200.348824/generated_image.png +0 -0
- tester/generation/1714452200.348824/keeper.png +0 -0
- tester/generation/1714452200.348824/real_deal.png +0 -0
app.py
CHANGED
|
@@ -13,6 +13,7 @@ from PIL import Image
|
|
| 13 |
from huggingface_hub import from_pretrained_keras
|
| 14 |
from math import sqrt, ceil
|
| 15 |
import numpy as np
|
|
|
|
| 16 |
|
| 17 |
modelieo=[
|
| 18 |
'nathanReitinger/MNIST-diffusion',
|
|
@@ -77,9 +78,9 @@ def get_sims(gen_filepath, gen_label, file_path, hunting_time_limit):
|
|
| 77 |
now = time.time()
|
| 78 |
if now-start > hunting_time_limit:
|
| 79 |
print(str(now-start) + "s")
|
| 80 |
-
return lowest_image_path
|
| 81 |
|
| 82 |
-
return lowest_image_path
|
| 83 |
|
| 84 |
|
| 85 |
def digit_recognition(filename):
|
|
@@ -186,215 +187,35 @@ def TextToImage(Prompt,inference_steps, model):
|
|
| 186 |
hunting_time_limit = abs(int(prompt))
|
| 187 |
|
| 188 |
original_image, other_images = get_other(image, hunting_time_limit)
|
|
|
|
|
|
|
| 189 |
ai_gen = Image.open(open(original_image, 'rb'))
|
| 190 |
-
training_data = Image.open(open(
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
|
| 194 |
-
import gradio as gr
|
| 195 |
-
interface = gr.Interface(fn=TextToImage,
|
| 196 |
-
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
|
| 197 |
-
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
|
| 198 |
-
# css="#output_image{width: 256px !important; height: 256px !important;}",
|
| 199 |
-
title='Unconditional Image Generation')
|
| 200 |
-
|
| 201 |
-
interface.launch()
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
# import tensorflow as tf
|
| 208 |
-
# from diffusers import DiffusionPipeline
|
| 209 |
-
# import spaces
|
| 210 |
-
# # import torch
|
| 211 |
-
# import PIL.Image
|
| 212 |
-
# from PIL import Image
|
| 213 |
-
# from torch.autograd import Variable
|
| 214 |
-
# import gradio as gr
|
| 215 |
-
# import gradio.components as grc
|
| 216 |
-
# import numpy as np
|
| 217 |
-
# from huggingface_hub import from_pretrained_keras
|
| 218 |
-
# from image_similarity_measures.evaluate import evaluation
|
| 219 |
-
# import keras
|
| 220 |
-
# import time
|
| 221 |
-
# import requests
|
| 222 |
-
# import matplotlib.pyplot as plt
|
| 223 |
-
# import os
|
| 224 |
-
# from pytorch_msssim import ssim, ms_ssim, SSIM, MS_SSIM
|
| 225 |
-
# from gradio_imageslider import ImageSlider
|
| 226 |
-
|
| 227 |
-
# # os.environ['KMP_DUPLICATE_LIB_OK']='TRUE'
|
| 228 |
-
|
| 229 |
-
# # options = ['Placeholder A', 'Placeholder B', 'Placeholder C']
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
| 233 |
-
# # device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 234 |
-
# # pipeline = pipeline.to(device=device)
|
| 235 |
-
|
| 236 |
-
# # @spaces.GPU
|
| 237 |
-
# # def predict(steps, seed):
|
| 238 |
-
# # print("HI")
|
| 239 |
-
# # generator = torch.manual_seed(seed)
|
| 240 |
-
# # for i in range(1,steps):
|
| 241 |
-
# # yield pipeline(generator=generator, num_inference_steps=i).images[0]
|
| 242 |
-
|
| 243 |
-
# # gr.Interface(
|
| 244 |
-
# # predict,
|
| 245 |
-
# # inputs=[
|
| 246 |
-
# # grc.Slider(0, 1000, label='Inference Steps', value=42, step=1),
|
| 247 |
-
# # grc.Slider(0, 2147483647, label='Seed', value=42, step=1),
|
| 248 |
-
# # ],
|
| 249 |
-
# # outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
|
| 250 |
-
# # css="#output_image{width: 256px !important; height: 256px !important;}",
|
| 251 |
-
# # title="Model Problems: Infringing on MNIST!",
|
| 252 |
-
# # description="Opening the black box.",
|
| 253 |
-
# # ).queue().launch()
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
# from diffusers import StableDiffusionPipeline
|
| 257 |
-
# import torch
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
# modellist=['nathanReitinger/MNIST-diffusion-oneImage',
|
| 261 |
-
# 'nathanReitinger/MNIST-diffusion',
|
| 262 |
-
# # 'nathanReitinger/MNIST-GAN',
|
| 263 |
-
# # 'nathanReitinger/MNIST-GAN-noDropout'
|
| 264 |
-
# ]
|
| 265 |
-
|
| 266 |
-
# # pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
|
| 267 |
-
# # device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 268 |
-
# # pipeline = pipeline.to(device=device)
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
# def getModel(model):
|
| 272 |
-
# model_id = model
|
| 273 |
-
|
| 274 |
-
# (train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
|
| 275 |
-
# RANDO = str(time.time())
|
| 276 |
-
# file_path = 'tester/' + model_id.replace("/", "-") + "/" + RANDO + '/'
|
| 277 |
-
# os.makedirs(file_path)
|
| 278 |
-
# train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
|
| 279 |
-
# train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
|
| 280 |
-
|
| 281 |
-
# print(model_id)
|
| 282 |
-
# image = None
|
| 283 |
-
# if 'diffusion' in model_id:
|
| 284 |
-
# pipe = DiffusionPipeline.from_pretrained(model_id)
|
| 285 |
-
# pipe = pipe.to("cpu")
|
| 286 |
-
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=1).images[0]
|
| 287 |
-
# else:
|
| 288 |
-
# pipe = DiffusionPipeline.from_pretrained('nathanReitinger/MNIST-diffusion')
|
| 289 |
-
# pipe = pipe.to("cpu")
|
| 290 |
-
# test = from_pretrained_keras('nathanReitinger/MNIST-GAN')
|
| 291 |
-
# image = pipe(generator= torch.manual_seed(42), num_inference_steps=40).images[0]
|
| 292 |
-
|
| 293 |
-
# ########################################### let's save this image for comparison to others
|
| 294 |
-
# fig = plt.figure(figsize=(1, 1))
|
| 295 |
-
# plt.subplot(1, 1, 0+1)
|
| 296 |
-
# plt.imshow(image, cmap='gray')
|
| 297 |
-
# plt.axis('off')
|
| 298 |
-
# plt.savefig(file_path + 'generated_image.png')
|
| 299 |
-
# plt.close()
|
| 300 |
-
|
| 301 |
-
# API_URL = "https://api-inference.huggingface.co/models/farleyknight/mnist-digit-classification-2022-09-04"
|
| 302 |
-
|
| 303 |
-
# # get a prediction on what number this is
|
| 304 |
-
# def query(filename):
|
| 305 |
-
# with open(filename, "rb") as f:
|
| 306 |
-
# data = f.read()
|
| 307 |
-
# response = requests.post(API_URL, data=data)
|
| 308 |
-
# return response.json()
|
| 309 |
-
|
| 310 |
-
# # use latest model to generate a new image, return path
|
| 311 |
-
# ret = False
|
| 312 |
-
# output = None
|
| 313 |
-
# while ret == False:
|
| 314 |
-
# output = query(file_path + 'generated_image.png')
|
| 315 |
-
# if 'error' in output:
|
| 316 |
-
# time.sleep(10)
|
| 317 |
-
# ret = False
|
| 318 |
-
# else:
|
| 319 |
-
# ret = True
|
| 320 |
-
# print(output)
|
| 321 |
-
|
| 322 |
-
# low_score_log = ''
|
| 323 |
-
# this_label_for_this_image = int(output[0]['label'])
|
| 324 |
-
# low_score_log += "this image has been identified as a:" + str(this_label_for_this_image) + "\n" + str(output) + "\n"
|
| 325 |
-
# print("===================")
|
| 326 |
-
|
| 327 |
-
# lowest_score = 10000
|
| 328 |
-
# lowest_image = None
|
| 329 |
-
|
| 330 |
-
# for i in range(len(train_labels)):
|
| 331 |
-
# # print(i)
|
| 332 |
-
# if train_labels[i] == this_label_for_this_image:
|
| 333 |
-
|
| 334 |
-
# ###
|
| 335 |
-
# # get a real image (of correct number)
|
| 336 |
-
# ###
|
| 337 |
-
|
| 338 |
-
# # print(i)
|
| 339 |
-
# to_check = train_images[i]
|
| 340 |
-
# fig = plt.figure(figsize=(1, 1))
|
| 341 |
-
# plt.subplot(1, 1, 0+1)
|
| 342 |
-
# plt.imshow(to_check, cmap='gray')
|
| 343 |
-
# plt.axis('off')
|
| 344 |
-
# plt.savefig(file_path + 'real_deal.png')
|
| 345 |
-
# plt.close()
|
| 346 |
-
|
| 347 |
-
# # baseline = evaluation(org_img_path='results/real_deal.png', pred_img_path='results/real_deal.png', metrics=["rmse", "psnr"])
|
| 348 |
-
# # print("---")
|
| 349 |
-
|
| 350 |
-
# ###
|
| 351 |
-
# # check how close that real training data is to generated number
|
| 352 |
-
# ###
|
| 353 |
-
# results = evaluation(org_img_path=file_path + 'real_deal.png', pred_img_path=file_path+'generated_image.png', metrics=["rmse", "psnr"])
|
| 354 |
-
# if results['rmse'] < lowest_score:
|
| 355 |
-
|
| 356 |
-
# lowest_score = results['rmse']
|
| 357 |
-
# lowest_image = to_check
|
| 358 |
-
|
| 359 |
-
# # image1 = np.array(Image.open(file_path + 'real_deal.png'))
|
| 360 |
-
# # image2 = np.array(Image.open(file_path + 'generated_image.png'))
|
| 361 |
-
# # img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
|
| 362 |
-
# # img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
|
| 363 |
-
# # img1 = Variable( img1, requires_grad=False)
|
| 364 |
-
# # img2 = Variable( img2, requires_grad=True)
|
| 365 |
-
# # ssim_score = ssim(img1, img2).item()
|
| 366 |
-
|
| 367 |
-
# # # sys.exit()
|
| 368 |
-
# # # l2 = distance.euclidean(image1, image2)
|
| 369 |
-
|
| 370 |
-
# # low_score_log += 'rmse score:' + str(lowest_score) + "\n"
|
| 371 |
-
# # low_score_log += 'ssim score:' + str(ssim_score) + "\n"
|
| 372 |
-
# # low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
|
| 373 |
-
|
| 374 |
-
# # low_score_log += "---------\n"
|
| 375 |
-
|
| 376 |
-
# # print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
|
| 377 |
-
|
| 378 |
-
# # fig = plt.figure(figsize=(1, 1))
|
| 379 |
-
# # plt.subplot(1, 1, 0+1)
|
| 380 |
-
# # plt.imshow(to_check, cmap='gray')
|
| 381 |
-
# # plt.axis('off')
|
| 382 |
-
# # plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
|
| 383 |
-
# # plt.close()
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
# # f = open(file_path + "score_log.txt", "w+")
|
| 387 |
-
# # f.write(low_score_log)
|
| 388 |
-
# # f.close()
|
| 389 |
-
|
| 390 |
-
# print("Done!")
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
# ############################################ return image that you just generated
|
| 394 |
-
# return [image, lowest_image]
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
# import gradio as gr
|
| 398 |
-
# output = "image"
|
| 399 |
-
# interface = gr.Interface(fn=getModel, inputs=[gr.Dropdown(modellist)], css="#output_image{width: 256px !important; height: 256px !important;}", outputs=output, title='Model Problems (infringement)') # outputs="image",
|
| 400 |
-
# interface.launch(debug=True)
|
|
|
|
| 13 |
from huggingface_hub import from_pretrained_keras
|
| 14 |
from math import sqrt, ceil
|
| 15 |
import numpy as np
|
| 16 |
+
import gradio as gr
|
| 17 |
|
| 18 |
modelieo=[
|
| 19 |
'nathanReitinger/MNIST-diffusion',
|
|
|
|
| 78 |
now = time.time()
|
| 79 |
if now-start > hunting_time_limit:
|
| 80 |
print(str(now-start) + "s")
|
| 81 |
+
return [lowest_image_path, lowest_score]
|
| 82 |
|
| 83 |
+
return [lowest_image_path, lowest_score]
|
| 84 |
|
| 85 |
|
| 86 |
def digit_recognition(filename):
|
|
|
|
| 187 |
hunting_time_limit = abs(int(prompt))
|
| 188 |
|
| 189 |
original_image, other_images = get_other(image, hunting_time_limit)
|
| 190 |
+
the_file = other_images[0]
|
| 191 |
+
the_rmse = other_images[1]
|
| 192 |
ai_gen = Image.open(open(original_image, 'rb'))
|
| 193 |
+
training_data = Image.open(open(the_file, 'rb'))
|
| 194 |
+
|
| 195 |
+
another_one = (training_data, "RMSE: " + str(round(the_rmse,5) ))
|
| 196 |
+
|
| 197 |
+
return [ai_gen, another_one]
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
with gr.Blocks() as app:
|
| 201 |
+
|
| 202 |
+
interface = gr.Interface(fn=TextToImage,
|
| 203 |
+
inputs=[gr.Textbox(show_label=True, label='How many seconds to hunt for copies?',), gr.Slider(1, 1000, label='Inference Steps', value=100, step=1), gr.Dropdown(modelieo)],
|
| 204 |
+
outputs=gr.Gallery(label="Generated image", show_label=True, elem_id="gallery", columns=[2], rows=[1], object_fit="contain", height="auto"),
|
| 205 |
+
# css="#output_image{width: 256px !important; height: 256px !important;}",
|
| 206 |
+
title='Unconditional Image Generation',
|
| 207 |
+
)
|
| 208 |
+
gr.HTML(
|
| 209 |
+
"<hr>"
|
| 210 |
+
"<h1><center>Do machine learing models store protected content?</center></h1>" +
|
| 211 |
+
"<p><center><span style='color: red;'>Enter a time to hunt for copies (seconds), select a model, and hit submit!</center></p>" +
|
| 212 |
+
"<p><center><strong>These image generation models will give you a 'bespoke' generation ❤ of an MNIST hand-drawn digit</p>" +
|
| 213 |
+
"<p><center>then the program will search in training data (for <i>n</i> seconds) to find similar images: <a href='https://medium.com/@mygreatlearning/rmse-what-does-it-mean-2d446c0b1d0e'>RMSE<a>, lower is more similar</p>" +
|
| 214 |
+
"<p><a href='https://nathanreitinger.umiacs.io'>@nathanReitinger<a></p>"
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
app.queue().launch()
|
| 218 |
+
# interface.launch(share=True)
|
| 219 |
+
|
| 220 |
|
| 221 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -2,24 +2,11 @@
|
|
| 2 |
|
| 3 |
diffusers==0.27.2
|
| 4 |
gradio==4.28.3
|
| 5 |
-
<<<<<<< HEAD
|
| 6 |
huggingface-hub==0.22.2
|
| 7 |
image-similarity-measures==0.3.6
|
| 8 |
matplotlib==3.8.4
|
| 9 |
numpy==1.25.2
|
| 10 |
pillow==10.3.0
|
| 11 |
requests==2.31.0
|
| 12 |
-
=======
|
| 13 |
-
gradio_imageslider==0.0.20
|
| 14 |
-
huggingface-hub==0.22.2
|
| 15 |
-
image-similarity-measures==0.3.6
|
| 16 |
-
keras==2.11.0
|
| 17 |
-
matplotlib==3.8.4
|
| 18 |
-
numpy==1.25.2
|
| 19 |
-
pillow==10.3.0
|
| 20 |
-
pytorch-msssim==1.0.0
|
| 21 |
-
requests==2.31.0
|
| 22 |
-
spaces==0.26.2
|
| 23 |
-
>>>>>>> 0fceaca51b594336a55134745a393f595fe283f7
|
| 24 |
tensorflow==2.11.0
|
| 25 |
torch==2.2.2
|
|
|
|
| 2 |
|
| 3 |
diffusers==0.27.2
|
| 4 |
gradio==4.28.3
|
|
|
|
| 5 |
huggingface-hub==0.22.2
|
| 6 |
image-similarity-measures==0.3.6
|
| 7 |
matplotlib==3.8.4
|
| 8 |
numpy==1.25.2
|
| 9 |
pillow==10.3.0
|
| 10 |
requests==2.31.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
tensorflow==2.11.0
|
| 12 |
torch==2.2.2
|
tester/generation/1714450880.962815/generated_image.png
ADDED
|
tester/generation/1714450880.962815/keeper.png
ADDED
|
tester/generation/1714450880.962815/real_deal.png
ADDED
|
tester/generation/1714450908.324796/generated_image.png
ADDED
|
tester/generation/1714450908.324796/keeper.png
ADDED
|
tester/generation/1714450908.324796/real_deal.png
ADDED
|
tester/generation/1714450979.7165031/generated_image.png
ADDED
|
tester/generation/1714450979.7165031/keeper.png
ADDED
|
tester/generation/1714450979.7165031/real_deal.png
ADDED
|
tester/generation/1714451016.7755892/generated_image.png
ADDED
|
tester/generation/1714451016.7755892/keeper.png
ADDED
|
tester/generation/1714451016.7755892/real_deal.png
ADDED
|
tester/generation/1714451444.908609/generated_image.png
ADDED
|
tester/generation/1714451444.908609/keeper.png
ADDED
|
tester/generation/1714451444.908609/real_deal.png
ADDED
|
tester/generation/1714451512.23043/generated_image.png
ADDED
|
tester/generation/1714451512.23043/keeper.png
ADDED
|
tester/generation/1714451512.23043/real_deal.png
ADDED
|
tester/generation/1714451550.030316/generated_image.png
ADDED
|
tester/generation/1714451550.030316/keeper.png
ADDED
|
tester/generation/1714451550.030316/real_deal.png
ADDED
|
tester/generation/1714451807.0931032/generated_image.png
ADDED
|
tester/generation/1714451807.0931032/keeper.png
ADDED
|
tester/generation/1714451807.0931032/real_deal.png
ADDED
|
tester/generation/1714451841.973258/generated_image.png
ADDED
|
tester/generation/1714451841.973258/keeper.png
ADDED
|
tester/generation/1714451841.973258/real_deal.png
ADDED
|
tester/generation/1714451921.654916/generated_image.png
ADDED
|
tester/generation/1714451921.654916/keeper.png
ADDED
|
tester/generation/1714451921.654916/real_deal.png
ADDED
|
tester/generation/1714451971.985685/generated_image.png
ADDED
|
tester/generation/1714451971.985685/keeper.png
ADDED
|
tester/generation/1714451971.985685/real_deal.png
ADDED
|
tester/generation/1714452167.314516/generated_image.png
ADDED
|
tester/generation/1714452167.314516/keeper.png
ADDED
|
tester/generation/1714452167.314516/real_deal.png
ADDED
|
tester/generation/1714452200.348824/generated_image.png
ADDED
|
tester/generation/1714452200.348824/keeper.png
ADDED
|
tester/generation/1714452200.348824/real_deal.png
ADDED
|