temp-9384289 commited on
Commit
3aaf803
·
1 Parent(s): 8009a95
Files changed (1) hide show
  1. app.py +26 -24
app.py CHANGED
@@ -120,6 +120,7 @@ def getModel(model):
120
  print("===================")
121
 
122
  lowest_score = 10000
 
123
 
124
  for i in range(len(train_labels)):
125
  # print(i)
@@ -148,43 +149,44 @@ def getModel(model):
148
  if results['rmse'] < lowest_score:
149
 
150
  lowest_score = results['rmse']
 
151
 
152
- image1 = np.array(Image.open(file_path + 'real_deal.png'))
153
- image2 = np.array(Image.open(file_path + 'generated_image.png'))
154
- img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
155
- img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
156
- img1 = Variable( img1, requires_grad=False)
157
- img2 = Variable( img2, requires_grad=True)
158
- ssim_score = ssim(img1, img2).item()
159
 
160
- # sys.exit()
161
- # l2 = distance.euclidean(image1, image2)
162
 
163
- low_score_log += 'rmse score:' + str(lowest_score) + "\n"
164
- low_score_log += 'ssim score:' + str(ssim_score) + "\n"
165
- low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
166
 
167
- low_score_log += "---------\n"
168
 
169
- print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
170
 
171
- fig = plt.figure(figsize=(1, 1))
172
- plt.subplot(1, 1, 0+1)
173
- plt.imshow(to_check, cmap='gray')
174
- plt.axis('off')
175
- plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
176
- plt.close()
177
 
178
 
179
- f = open(file_path + "score_log.txt", "w+")
180
- f.write(low_score_log)
181
- f.close()
182
 
183
  print("Done!")
184
 
185
 
186
  ############################################ return image that you just generated
187
- return image
188
 
189
 
190
  import gradio as gr
 
120
  print("===================")
121
 
122
  lowest_score = 10000
123
+ lowest_image = None
124
 
125
  for i in range(len(train_labels)):
126
  # print(i)
 
149
  if results['rmse'] < lowest_score:
150
 
151
  lowest_score = results['rmse']
152
+ lowest_image = to_check
153
 
154
+ # image1 = np.array(Image.open(file_path + 'real_deal.png'))
155
+ # image2 = np.array(Image.open(file_path + 'generated_image.png'))
156
+ # img1 = torch.from_numpy(image1).float().unsqueeze(0).unsqueeze(0)/255.0
157
+ # img2 = torch.from_numpy(image2).float().unsqueeze(0).unsqueeze(0)/255.0
158
+ # img1 = Variable( img1, requires_grad=False)
159
+ # img2 = Variable( img2, requires_grad=True)
160
+ # ssim_score = ssim(img1, img2).item()
161
 
162
+ # # sys.exit()
163
+ # # l2 = distance.euclidean(image1, image2)
164
 
165
+ # low_score_log += 'rmse score:' + str(lowest_score) + "\n"
166
+ # low_score_log += 'ssim score:' + str(ssim_score) + "\n"
167
+ # low_score_log += 'found when:' + str(round( ((i/len(train_labels)) * 100),2 )) + '%' + "\n"
168
 
169
+ # low_score_log += "---------\n"
170
 
171
+ # print(lowest_score, ssim_score, str(round( ((i/len(train_labels)) * 100),2 )) + '%')
172
 
173
+ # fig = plt.figure(figsize=(1, 1))
174
+ # plt.subplot(1, 1, 0+1)
175
+ # plt.imshow(to_check, cmap='gray')
176
+ # plt.axis('off')
177
+ # plt.savefig(file_path+str(i) + "--" + str(lowest_score) + '---most_close.png')
178
+ # plt.close()
179
 
180
 
181
+ # f = open(file_path + "score_log.txt", "w+")
182
+ # f.write(low_score_log)
183
+ # f.close()
184
 
185
  print("Done!")
186
 
187
 
188
  ############################################ return image that you just generated
189
+ return (image, lowest_image)
190
 
191
 
192
  import gradio as gr