nreitinger commited on
Commit
611bd3a
·
1 Parent(s): 8a6e18d

modelProblems

Browse files
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +29 -0
  3. requirements.txt +4 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: ModelProblems
3
  emoji: 👀
4
- colorFrom: red
5
- colorTo: green
6
  sdk: gradio
7
  sdk_version: 4.28.3
8
  app_file: app.py
 
1
  ---
2
  title: ModelProblems
3
  emoji: 👀
4
+ colorFrom: pink
5
+ colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 4.28.3
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import DiffusionPipeline
2
+ import spaces
3
+ import torch
4
+ import PIL.Image
5
+ import gradio as gr
6
+ import gradio.components as grc
7
+ import numpy as np
8
+
9
+ pipeline = DiffusionPipeline.from_pretrained("nathanReitinger/MNIST-diffusion-oneImage")
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ pipeline = pipeline.to(device=device)
12
+
13
+ @spaces.GPU
14
+ def predict(steps, seed):
15
+ generator = torch.manual_seed(seed)
16
+ for i in range(1,steps):
17
+ yield pipeline(generator=generator, num_inference_steps=i).images[0]
18
+
19
+ gr.Interface(
20
+ predict,
21
+ inputs=[
22
+ grc.Slider(1, 1000, label='Inference Steps', value=1000, step=1),
23
+ # grc.Slider(0, 2147483647, label='Seed', value=69420, step=1),
24
+ ],
25
+ outputs=gr.Image(height=28, width=28, type="pil", elem_id="output_image"),
26
+ css="#output_image{width: 256px !important; height: 256px !important;}",
27
+ title="Unconditional MNIST -- infringing (trained on one image)!",
28
+ description="A clearly infringing diffusion model trained on one digit of the MNIST dataset.",
29
+ ).queue().launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ diffusers
2
+ accelerate
3
+ torch
4
+ safetensors