File size: 3,467 Bytes
d7aea57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import List, Tuple

import pytorch_lightning as pl
import torch
from sacred import Ingredient
from torch import nn
from transformers import AdamW, DetrForObjectDetection, DetrImageProcessor

detr_ingredient = Ingredient("detr", save_git_info=False)


# pylint: disable=unused-variable
@detr_ingredient.config
def config():
    hf_ckpt = "facebook/detr-resnet-50"
    model_path = "./models/detr.ckpt"

    num_label = 3

    labels = ["Tableau Electrique", "Disjoncteur", "Bouton de test"]

    learning_rate = 1e-5


class DeTrLightning(pl.LightningModule):
    @detr_ingredient.capture
    def __init__(self, hf_ckpt: str, labels: List[str]):
        super().__init__()

        self.model = DetrForObjectDetection.from_pretrained(
            hf_ckpt,
            num_labels=len(labels),
            id2label=dict(enumerate(labels)),
            label2id={label: i for i, label in enumerate(labels)},
            ignore_mismatched_sizes=True,
        )

    def forward(self, *args, **kwargs):
        return self.model(*args, **kwargs)

    # pylint: disable=arguments-differ
    def training_step(self, batch):
        targets = batch["labels"]

        output = self.model(**batch)
        loss = output["loss"]
        self.log("train_loss", loss)

        return loss

    # pylint: disable=unused-argument
    def validation_step(self, batch, batch_id):
        inputs, mask, targets = (
            batch["pixel_values"],
            batch["pixel_mask"],
            batch["labels"],
        )

        output = self.model(inputs, pixel_mask=mask, labels=targets)
        loss = output["loss"]
        self.log("test_loss", loss)

        return loss

    # pylint: disable=unused-argument
    def test_step(self, batch, batch_id):
        inputs, mask, targets = (
            batch["pixel_values"],
            batch["pixel_mask"],
            batch["labels"],
        )

        output = self.model(inputs, pixel_mask=mask, labels=targets)
        loss = output["loss"]
        self.log("test_loss", loss)

        return loss

    # pylint: disable=arguments-differ
    @detr_ingredient.capture
    def configure_optimizers(self, learning_rate):
        optimizer = AdamW(self.parameters(), lr=learning_rate)
        return optimizer

    @staticmethod
    def box_cxcywh_to_xyxy(boxes):
        center_x, center_y, width, height = boxes.unbind(-1)
        boxes = torch.stack(
            # top left x, top left y, bottom right x, bottom right y
            [
                (center_x - 0.5 * width),
                (center_y - 0.5 * height),
                (center_x + 0.5 * width),
                (center_y + 0.5 * height),
            ],
            dim=-1,
        )
        return boxes

    def process_output(self, model_output, image_size: Tuple[int, int]):
        prob = model_output.logits.softmax(-1)
        scores, labels = prob.max(-1)

        boxes = self.box_cxcywh_to_xyxy(model_output.pred_boxes)
        scale_fct = torch.Tensor(
            [image_size[0], image_size[1], image_size[0], image_size[1]]
        ).unsqueeze(0)
        boxes = boxes * scale_fct[:, None, :]

        return boxes, labels, scores


@detr_ingredient.capture
def get_detr(model_path: str):
    if model_path:
        return DeTrLightning.load_from_checkpoint(model_path)

    return DeTrLightning()


@detr_ingredient.capture
def get_detr_feature_extractor(hf_ckpt):
    return DetrImageProcessor.from_pretrained(
        hf_ckpt,
    )