Spaces:
Running
Running
from itertools import islice | |
import numpy as np | |
# Sliding window function | |
def window(seq, n=3): | |
"""https://stackoverflow.com/questions/6822725/rolling-or-sliding-window-iterator | |
Returns a sliding window of width n over data from the iterable seq""" | |
it = iter(seq) | |
result = tuple(islice(it, n)) | |
if len(result) == n: | |
yield result | |
for elem in it: | |
result = result[1:] + (elem,) | |
yield result | |
# Compute depth scores | |
def get_depths(scores): | |
"""Given a sequence of coherence scores of length n, compute a sequence of depth scores of similar length""" | |
def climb(seq, i, mode='left'): | |
"""Given a sequence seq of values and index i, advance the index either to the right or left while the | |
value keeps increasing, then return the value at new index | |
""" | |
if mode == 'left': | |
while True: | |
curr = seq[i] | |
if i == 0: | |
return curr | |
i = i-1 | |
if not seq[i] > curr: | |
return curr | |
if mode == 'right': | |
while True: | |
curr = seq[i] | |
if i == (len(seq)-1): | |
return curr | |
i = i+1 | |
if not seq[i] > curr: | |
return curr | |
depths = [] | |
for i in range(len(scores)): | |
score = scores[i] | |
l_peak = climb(scores, i, mode='left') | |
r_peak = climb(scores, i, mode='right') | |
depth = 0.5 * (l_peak + r_peak - (2*score)) | |
depths.append(depth) | |
return np.array(depths) | |
from scipy.signal import argrelmax | |
# Filter out local maxima | |
def get_local_maxima(depth_scores, order=1): | |
"""Given a sequence of depth scores, return a filtered sequence where only local maxima | |
selected based on the given order""" | |
maxima_ids = argrelmax(depth_scores, order=order)[0] | |
filtered_scores = np.zeros(len(depth_scores)) | |
filtered_scores[maxima_ids] = depth_scores[maxima_ids] | |
return filtered_scores | |
# Automatic threshold computation | |
def compute_threshold(scores): | |
"""From Texttiling: https://aclanthology.org/J97-1003.pdf | |
Automatically compute an appropriate threshold given a sequence of depth scores | |
""" | |
s = scores[np.nonzero(scores)] | |
threshold = np.mean(s) - (np.std(s) / 2) | |
# threshold = np.mean(s) - (np.std(s)) | |
return threshold | |
def get_threshold_segments(scores, threshold=0.1): | |
"""Given a sequence of depth scores, return indexes where the value is greater than the threshold""" | |
segment_ids = np.where(scores >= threshold)[0] | |
return segment_ids |