gwkrsrch commited on
Commit
c413da6
·
1 Parent(s): a4cb68c
Files changed (4) hide show
  1. app.py +33 -0
  2. requirements.txt +3 -0
  3. sample1.jpg +0 -0
  4. sample2.jpg +0 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Donut
3
+ Copyright (c) 2022-present NAVER Corp.
4
+ MIT License
5
+ """
6
+ import argparse
7
+
8
+ import gradio as gr
9
+ import torch
10
+
11
+ from donut import DonutModel
12
+
13
+ def demo_process(input_img):
14
+ global pretrained_model, task_prompt, task_name
15
+ output = pretrained_model.inference(image=input_img, prompt=task_prompt)["predictions"][0]
16
+ return output["text_sequence"].replace(" ", "") # temp
17
+
18
+ task_prompt = f"<s_kuzushiji>"
19
+ pretrained_model = DonutModel.from_pretrained("naver-clova-ix/donut-base-finetuned-kuzushiji")
20
+ pretrained_model.eval()
21
+
22
+ demo = gr.Interface(
23
+ fn=demo_process,
24
+ inputs= gr.inputs.Image(type="pil"),
25
+ outputs="text",
26
+ title=f"Donut 🍩 demonstration for Kuzushiji Decoding",
27
+ description="""This is a toy example for decoding kuzushiji (old Japanese cursive characters, くずし字) documents with a single E2E model, `Document Understanding Transformer` (Donut 🍩, ECCV-22). This particular model is fine-tuned on <a href="http://codh.rois.ac.jp/char-shape/">Kuzushiji Dataset</a>. To use it, simply upload a kuzushiji document image or use one of the examples below and click `Submit`. Results will show up in a few seconds.<br>* Note that this demo is running on a small resource environment, `basic CPU plan` (`2 vCPU, 16GiB RAM`).<br>* Demonstrations for other types of documents/tasks are available at https://github.com/clovaai/donut<br>
28
+ * More details of Donut are available at <a href="https://arxiv.org/abs/2111.15664">Paper</a>, <a href="https://github.com/clovaai/donut">GitHub</a>, and <a href="https://huggingface.co/docs/transformers/model_doc/donut">Huggingface 🤗 Implementation Page</a>.<br>
29
+ * Kuzushiji Dataset is from <a href="http://codh.rois.ac.jp/char-shape/">Dataset Link</a> (Reference: 『日本古典籍くずし字データセット』(国文研ほか所蔵/CODH加工)doi:10.20676/00000340).""",
30
+ examples=[["sample1.jpg"], ["sample2.jpg"]],
31
+ cache_examples=False,
32
+ )
33
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ donut-python
3
+ gradio
sample1.jpg ADDED
sample2.jpg ADDED