File size: 13,461 Bytes
9860a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567b7f
 
9860a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3567b7f
 
 
 
 
 
 
9860a06
 
 
 
3567b7f
9860a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
Copyright (c) 2024-present Naver Cloud Corp.
This source code is based on code from the Segment Anything Model (SAM)
(https://github.com/facebookresearch/segment-anything).

This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os, sys
sys.path.append(os.getcwd())

# Gradio demo, comparison SAM vs ZIM
import os
import torch
import gradio as gr
from gradio_image_prompter import ImagePrompter
import numpy as np
import cv2
from zim import zim_model_registry, ZimPredictor, ZimAutomaticMaskGenerator
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
from zim.utils import show_mat_anns

from huggingface_hub import hf_hub_download

def get_shortest_axis(image):
    h, w, _ = image.shape
    return h if h < w else w

def reset_image(image, prompts):
    if image is None:
        image = np.zeros((1024, 1024, 3), dtype=np.uint8)
    else:
        image = image['image']
    zim_predictor.set_image(image)
    sam_predictor.set_image(image)
    prompts = dict()
    black = np.zeros(image.shape[:2], dtype=np.uint8)

    return (image, image, image, image, black, black, black, black, prompts)

def reset_example_image(image, prompts):
    if image is None:
        image = np.zeros((1024, 1024, 3), dtype=np.uint8)

    zim_predictor.set_image(image)
    sam_predictor.set_image(image)
    prompts = dict()
    black = np.zeros(image.shape[:2], dtype=np.uint8)

    image_dict = {}
    image_dict['image'] = image
    image_dict['prompts'] = prompts

    return (image, image_dict, image, image, image, black, black, black, black, prompts)

def run_amg(image):
    gr.Info('Checkout ZIM Auto Mask tab.', duration=3)
    zim_masks = zim_mask_generator.generate(image)
    zim_masks_vis = show_mat_anns(image, zim_masks)
    
    sam_masks = sam_mask_generator.generate(image)
    sam_masks_vis = show_mat_anns(image, sam_masks)
    
    return zim_masks_vis, sam_masks_vis
    
    
def run_model(image, prompts):
    if not prompts:
        raise gr.Error(f'Please input any point or BBox')
    gr.Info('Checkout ZIM Mask tab.', duration=3)
    point_coords = None
    point_labels = None
    boxes = None

    if "point" in prompts:
        point_coords, point_labels = [], []

        for type, pts in prompts["point"]:
            point_coords.append(pts)
            point_labels.append(type)
        point_coords = np.array(point_coords)
        point_labels = np.array(point_labels)

    if "bbox" in prompts:
        boxes = prompts['bbox']
        boxes = np.array(boxes)

    if "scribble" in prompts:
        point_coords, point_labels = [], []

        for pts in prompts["scribble"]:
            point_coords.append(np.flip(pts))
            point_labels.append(1)
        if len(point_coords) == 0:
            raise gr.Error("Please input any scribbles.")
        point_coords = np.array(point_coords)
        point_labels = np.array(point_labels)

    # run ZIM
    zim_mask, _, _ = zim_predictor.predict(
        point_coords=point_coords,
        point_labels=point_labels,
        box=boxes,
        multimask_output=False,
    )
    zim_mask = np.squeeze(zim_mask, axis=0)
    zim_mask = np.uint8(zim_mask * 255)

    # run SAM
    sam_mask, _, _ = sam_predictor.predict(
        point_coords=point_coords,
        point_labels=point_labels,
        box=boxes,
        multimask_output=False,
        )
    sam_mask = np.squeeze(sam_mask, axis=0)
    sam_mask = np.uint8(sam_mask * 255)
    
    return zim_mask, sam_mask

def reset_scribble(image, scribble, prompts):
    # scribble = dict()
    for k in prompts.keys():
        prompts[k] = []

    for k, v in scribble.items():
        scribble[k] = None

    black = np.zeros(image.shape[:3], dtype=np.uint8)

    return scribble, black, black

def update_scribble(image, scribble, prompts):
    if "point" in prompts:
        del prompts["point"]

    if "bbox" in prompts:
        del prompts["bbox"]
    
    prompts = dict() # reset prompt
    scribble_mask = scribble["layers"][0][..., -1] > 0

    scribble_coords = np.argwhere(scribble_mask)
    n_points = min(len(scribble_coords), 24)
    indices = np.linspace(0, len(scribble_coords)-1, n_points, dtype=int)
    scribble_sampled = scribble_coords[indices]

    prompts["scribble"] = scribble_sampled
    
    zim_mask, sam_mask = run_model(image, prompts)

    return zim_mask, sam_mask, prompts


def draw_point(img, pt, size, color):
    # draw circle with white boundary region
    cv2.circle(img, (int(pt[0]), int(pt[1])), int(size * 1.3), (255, 255, 255), -1)
    cv2.circle(img, (int(pt[0]), int(pt[1])), int(size * 0.9), color, -1)


def draw_images(image, mask, prompts):
    if len(prompts) == 0 or mask.shape[1] == 1:
        return image, image, image

    minor = get_shortest_axis(image)
    size = int(minor / 80)

    image = np.float32(image)

    def blending(image, mask):
        mask = np.float32(mask) / 255
        blended_image = np.zeros_like(image, dtype=np.float32)
        blended_image[:, :, :] = [108, 0, 192]
        blended_image = (image * 0.5) + (blended_image * 0.5)
    
        img_with_mask = mask[:, :, None] * blended_image + (1 - mask[:, :, None]) * image
        img_with_mask = np.uint8(img_with_mask)

        return img_with_mask

    img_with_mask = blending(image, mask)
    img_with_point = img_with_mask.copy()

    if "point" in prompts:
        for type, pts in prompts["point"]:
            if type == "Positive":
                color = (0, 0, 255)
                draw_point(img_with_point, pts, size, color)
            elif type == "Negative":
                color = (255, 0, 0)
                draw_point(img_with_point, pts, size, color)

    size = int(minor / 200)

    return (
        img,
        img_with_mask,
    )

def get_point_or_box_prompts(img, prompts):
    image, img_prompts = img['image'], img['points']
    point_prompts = []
    box_prompts = []
    for prompt in img_prompts:
        for p in range(len(prompt)):
            prompt[p] = int(prompt[p])
        if prompt[2] == 2 and prompt[5] == 3:  # box prompt
            if len(box_prompts) != 0:
                raise gr.Error("Please input only one BBox.", duration=3)
            box_prompts.append([prompt[0], prompt[1], prompt[3], prompt[4]])
        elif prompt[2] == 1 and prompt[5] == 4:  # Positive point prompt
            point_prompts.append((1, (prompt[0], prompt[1])))
        elif prompt[2] == 0 and prompt[5] == 4:  # Negative point prompt
            point_prompts.append((0, (prompt[0], prompt[1])))

    if "scribble" in prompts:
        del prompts["scribble"]

    if len(point_prompts) > 0:
        prompts['point'] = point_prompts
    elif 'point' in prompts:
        del prompts['point']

    if len(box_prompts) > 0:
        prompts['bbox'] = box_prompts
    elif 'bbox' in prompts:
        del prompts['bbox']

    zim_mask, sam_mask = run_model(image, prompts)

    return image, zim_mask, sam_mask, prompts

def get_examples():
    assets_dir = os.path.join(os.path.dirname(__file__), 'examples')
    images = os.listdir(assets_dir)
    return [os.path.join(assets_dir, img) for img in images]

def download_onnx_weights(repo_id="naver-iv/zim-anything-vitb", file_dir="zim_vit_b_2043"):
    hf_hub_download(repo_id=repo_id, filename=f"{file_dir}/encoder.onnx")
    filepath = hf_hub_download(repo_id=repo_id, filename=f"{file_dir}/decoder.onnx")

    return os.path.dirname(filepath)

    
if __name__ == "__main__":
    backbone = "vit_b"
    
    # load ZIM
    zim = zim_model_registry[backbone](checkpoint=download_onnx_weights())
    if torch.cuda.is_available():
        zim.cuda()
    zim_predictor = ZimPredictor(zim)
    zim_mask_generator = ZimAutomaticMaskGenerator(
        zim, 
        pred_iou_thresh=0.7, 
        points_per_batch=8,
        stability_score_thresh=0.9, 
    )

    # load SAM
    ckpt_sam = "ckpts/sam_vit_b_01ec64.pth"
    sam = sam_model_registry[backbone](checkpoint=ckpt_sam)
    if torch.cuda.is_available():
        sam.cuda()
    sam_predictor = SamPredictor(sam)
    sam_mask_generator = SamAutomaticMaskGenerator(
        sam,
        points_per_batch=8,
    )
    
    with gr.Blocks() as demo:
        gr.Markdown("# <center> [Demo] ZIM: Zero-Shot Image Matting for Anything")

        prompts = gr.State(dict())
        img = gr.Image(visible=False)
        example_image = gr.Image(visible=False)
        
        with gr.Row():
            with gr.Column():
                # Point and Bbox prompt
                with gr.Tab(label="Point or Box"):
                    img_with_point_or_box = ImagePrompter(
                        label="query image", 
                        sources="upload"
                    )
                    interactions = "Left Click (Pos) | Middle/Right Click (Neg) | Press Move (Box)"
                    gr.Markdown("<h3 style='text-align: center'> {} </h3>".format(interactions))
                    run_bttn = gr.Button("Run")
                    amg_bttn = gr.Button("Automatic Mask Generation")

                # Scribble prompt
                with gr.Tab(label="Scribble"):
                    img_with_scribble = gr.ImageEditor(
                        label="Scribble", 
                        brush=gr.Brush(colors=["#00FF00"], default_size=15),
                        sources="upload", 
                        transforms=None, 
                        layers=False
                    )
                    interactions = "Press Move (Scribble)"
                    gr.Markdown("<h3 style='text-align: center'> Step 1. Select Draw button </h3>")
                    gr.Markdown("<h3 style='text-align: center'> Step 2. {} </h3>".format(interactions))
                    scribble_bttn = gr.Button("Run")
                    scribble_reset_bttn = gr.Button("Reset Scribbles")
                    amg_scribble_bttn = gr.Button("Automatic Mask Generation")
                
                # Example image
                gr.Examples(get_examples(), inputs=[example_image])

            # with gr.Row():
            with gr.Column():
                with gr.Tab(label="ZIM Image"):
                    img_with_zim_mask = gr.Image(
                        label="ZIM Image", 
                        interactive=False
                    )

                with gr.Tab(label="ZIM Mask"):
                    zim_mask = gr.Image(
                        label="ZIM Mask", 
                        image_mode="L", 
                        interactive=False
                    )
                with gr.Tab(label="ZIM Auto Mask"):
                    zim_amg = gr.Image(
                        label="ZIM Auto Mask", 
                        interactive=False
                    )
                    
            with gr.Column():
                with gr.Tab(label="SAM Image"):
                    img_with_sam_mask = gr.Image(
                        label="SAM image", 
                        interactive=False
                    )

                with gr.Tab(label="SAM Mask"):
                    sam_mask = gr.Image(
                        label="SAM Mask", 
                        image_mode="L", 
                        interactive=False
                    )
                    
                with gr.Tab(label="SAM Auto Mask"):
                    sam_amg = gr.Image(
                        label="SAM Auto Mask", 
                        interactive=False
                    )
                    
        example_image.change(
            reset_example_image,
            [example_image, prompts],
            [
                img,
                img_with_point_or_box,
                img_with_scribble,
                img_with_zim_mask,
                img_with_sam_mask,
                zim_amg,
                sam_amg,
                zim_mask,
                sam_mask,
                prompts,
            ]
        )

        img_with_point_or_box.upload(
            reset_image,
            [img_with_point_or_box, prompts],
            [
                img,
                img_with_scribble,
                img_with_zim_mask,
                img_with_sam_mask,
                zim_amg,
                sam_amg,
                zim_mask,
                sam_mask,
                prompts,
            ],
        )

        amg_bttn.click(
            run_amg,
            [img],
            [zim_amg, sam_amg]
        )
        amg_scribble_bttn.click(
            run_amg,
            [img],
            [zim_amg, sam_amg]
        )
        
        run_bttn.click(
            get_point_or_box_prompts,
            [img_with_point_or_box, prompts],
            [img, zim_mask, sam_mask, prompts]
        )

        zim_mask.change(
            draw_images,
            [img, zim_mask, prompts],
            [
                img, img_with_zim_mask, 
            ],
        )
        sam_mask.change(
            draw_images,
            [img, sam_mask, prompts],
            [
                img, img_with_sam_mask, 
            ],
        )
        
        scribble_reset_bttn.click(
            reset_scribble,
            [img, img_with_scribble, prompts],
            [img_with_scribble, zim_mask, sam_mask],
        )
        scribble_bttn.click(
            update_scribble,
            [img, img_with_scribble, prompts],
            [zim_mask, sam_mask, prompts],
        )

    demo.queue()
    demo.launch()