|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import sys, os |
|
import torch |
|
import matplotlib.pylab as plt |
|
from PIL import ImageOps |
|
|
|
def pump_matching(img1, img2, trained_with_st=False, scale=300, max_scale=1, max_rot=0, use_gpu=False): |
|
|
|
img1 = ImageOps.exif_transpose(img1) |
|
img2 = ImageOps.exif_transpose(img2) |
|
|
|
use_singlescale = max_scale==1 and max_rot==0 |
|
if use_singlescale: |
|
from test_singlescale import Main, arg_parser |
|
else: |
|
from test_multiscale import Main, arg_parser |
|
parser = arg_parser() |
|
|
|
args_list = ['--img1','dummy','--img2','dummy','--post-filter', '--desc','PUMP-stytrf' if trained_with_st else 'PUMP','--resize',str(scale)] |
|
if not use_gpu: |
|
args_list += ['--device', 'cpu'] |
|
if not use_singlescale: |
|
args_list += ['--max-scale',str(max_scale),'--max-rot',str(max_rot)] |
|
|
|
args = parser.parse_args(args_list) |
|
|
|
corres = Main().run_from_args_with_images(img1, img2, args) |
|
|
|
fig1 = plt.figure(1) |
|
plt.clf() |
|
ax1 = plt.gca() |
|
ax1.imshow(img1) |
|
ax1.axis('off') |
|
plt.tight_layout(pad=0) |
|
|
|
fig2 = plt.figure(2) |
|
plt.clf() |
|
ax2 = plt.gca() |
|
ax2.imshow(img2) |
|
ax2.axis('off') |
|
plt.tight_layout(pad=0) |
|
|
|
from tools.viz import plot_grid |
|
if corres.shape[-1] > 4: |
|
corres = corres[corres[:,4]>0,:] |
|
if corres.shape[0]>0: plot_grid(corres, ax1, ax2, marker='+') |
|
|
|
img1 = None |
|
img2 = None |
|
|
|
return fig1, fig2 |
|
|
|
has_cuda = torch.cuda.is_available() and torch.cuda.device_count()>0 |
|
|
|
title = "PUMP local descriptor demo" |
|
description = "This is a visualization demo for the PUMP local descriptors presented in our CVPR 2022 paper <b><a href='https://europe.naverlabs.com/research/publications/pump-pyramidal-and-uniqueness-matching-priors-for-unsupervised-learning-of-local-features/' target='_blank'>PUMP: Pyramidal and Uniqueness Matching Priors for Unsupervised Learning of Local Features</a></b>.</p><p><b>WARNING:</b> this demo runs on cpus with downscaled images, without multi-scale or multi-rotations testing, due to limited memory and computational resources, please check out our <a href='https://github.com/naver/pump' target='_blank'>original github repo</a> for these features.</p>" |
|
|
|
article = "<p style='text-align: center'><a href='https://github.com/naver/pump' target='_blank'>Original Github Repo</a></p>" |
|
|
|
iface = gr.Interface( |
|
fn=pump_matching, |
|
inputs=[ |
|
gr.inputs.Image(shape=None, type="pil", label="First Image"), |
|
gr.inputs.Image(shape=None, type="pil", label="Second Image"), |
|
gr.inputs.Checkbox(default=False, label="Use the model trained with style transfer"), |
|
|
|
|
|
|
|
|
|
], |
|
outputs=[ |
|
gr.outputs.Image(type="plot", label="Matches in the first image"), |
|
gr.outputs.Image(type="plot", label="Matches in the second image"), |
|
], |
|
title=title, |
|
theme='peach', |
|
description=description, |
|
article=article, |
|
examples=[ |
|
['datasets/gradio_demo/cat_src.jpg','datasets/gradio_demo/cat_tgt.jpg',False], |
|
['datasets/gradio_demo/food_src.jpg','datasets/gradio_demo/food_tgt.jpg',False], |
|
['datasets/demo_warp/mountains_src.jpg','datasets/demo_warp/mountains_tgt.jpg',False], |
|
] |
|
) |
|
iface.launch(enable_queue=True) |