SuperFeatures / app.py
YannisK's picture
temp
ec02159
raw
history blame
11.1 kB
import gradio as gr
import cv2
import torch
import torch.utils.data as data
from torchvision import transforms
from torch import nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib import colors
from mpl_toolkits.axes_grid1 import ImageGrid
import fire_network
import numpy as np
from PIL import Image
# Possible Scales for multiscale inference
scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25]
device = 'cpu'
# Load nets
state = torch.load('fire.pth', map_location='cpu')
state['net_params']['pretrained'] = None # no need for imagenet pretrained model
net_sfm = fire_network.init_network(**state['net_params']).to(device)
net_sfm.load_state_dict(state['state_dict'])
dim_red_params_dict = {}
for name, param in net_sfm.named_parameters():
if 'dim_reduction' in name:
dim_red_params_dict[name] = param
state2 = torch.load('fire_imagenet.pth', map_location='cpu')
state2['net_params'] = state['net_params']
state2['state_dict'] = dict(state2['state_dict'], **dim_red_params_dict);
net_imagenet = fire_network.init_network(**state['net_params']).to(device)
net_imagenet.load_state_dict(state2['state_dict'], strict=False)
# ---------------------------------------
transform = transforms.Compose([
transforms.Resize(1024),
transforms.ToTensor(),
transforms.Normalize(**dict(zip(["mean", "std"], net_sfm.runtime['mean_std'])))
])
# ---------------------------------------
# class ImgDataset(data.Dataset):
# def __init__(self, images, imsize):
# self.images = images
# self.imsize = imsize
# self.transform = transforms.Compose([transforms.ToTensor(), \
# transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
# def __getitem__(self, index):
# img = self.images[index]
# img.thumbnail((self.imsize, self.imsize), Image.Resampling.LANCZOS)
# print('after imresize:', img.size)
# return self.transform(img)
# def __len__(self):
# return len(self.images)
# ---------------------------------------
def match(query_feat, pos_feat, LoweRatioTh=0.9):
# first perform reciprocal nn
dist = torch.cdist(query_feat, pos_feat)
print('dist.size',dist.size())
best1 = torch.argmin(dist, dim=1)
best2 = torch.argmin(dist, dim=0)
print('best2.size',best2.size())
arange = torch.arange(best2.size(0))
reciprocal = best1[best2]==arange
# check Lowe ratio test
dist2 = dist.clone()
dist2[best2,arange] = float('Inf')
dist2_second2 = torch.argmin(dist2, dim=0)
ratio1to2 = dist[best2,arange] / dist2_second2
valid = torch.logical_and(reciprocal, ratio1to2<=LoweRatioTh)
pindices = torch.where(valid)[0]
qindices = best2[pindices]
# keep only the ones with same indices
valid = pindices==qindices
return pindices[valid]
# sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
def clear_figures():
plt.figure().clear()
plt.close()
plt.cla()
plt.clf()
col = plt.get_cmap('tab10')
def generate_matching_superfeatures(
im1, im2,
Imagenet_model=False,
scale_id=6, threshold=50,
random_mode=False, sf_ids=''): #, only_matching=True):
print('im1:', im1.size)
print('im2:', im2.size)
clear_figures()
net = net_sfm
if Imagenet_model:
net = net_imagenet
# dataset_ = ImgDataset(images=[im1, im2], imsize=1024)
# loader = torch.utils.data.DataLoader(dataset_, shuffle=False, pin_memory=True)
im1_tensor = transform(im1).unsqueeze(0)
im2_tensor = transform(im2).unsqueeze(0)
im1_cv = np.array(im1)[:, :, ::-1].copy()
im2_cv = np.array(im2)[:, :, ::-1].copy()
# extract features
with torch.no_grad():
output1 = net.get_superfeatures(im1_tensor.to(device), scales=[scales[scale_id]])
feats1 = output1[0][0]
attns1 = output1[1][0]
strenghts1 = output1[2][0]
output2 = net.get_superfeatures(im2_tensor.to(device), scales=[scales[scale_id]])
feats2 = output2[0][0]
attns2 = output2[1][0]
strenghts2 = output2[2][0]
feats1n = F.normalize(torch.t(torch.squeeze(feats1)), dim=1)
feats2n = F.normalize(torch.t(torch.squeeze(feats2)), dim=1)
print('feats1n.shape', feats1n.shape)
ind_match = match(feats1n, feats2n)
print('ind', ind_match)
print('ind.shape', ind_match.shape)
# outputs = []
# for im_tensor in loader:
# outputs.append(net.get_superfeatures(im_tensor.to(device), scales=[scales[scale_id]]))
# feats1 = outputs[0][0][0]
# attns1 = outputs[0][1][0]
# strenghts1 = outputs[0][2][0]
# feats2 = outputs[1][0][0]
# attns2 = outputs[1][1][0]
# strenghts2 = outputs[1][2][0]
print(feats1.shape, feats2.shape)
print(attns1.shape, attns2.shape)
print(strenghts1.shape, strenghts2.shape)
# which sf
sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9]
n_sf_ids = 10
if random_mode or sf_ids == '':
sf_idx_ = np.random.randint(256, size=n_sf_ids)
else:
sf_idx_ = map(int, sf_ids.strip().split(','))
# if only_matching:
if random_mode:
sf_idx_ = [int(jj) for jj in ind_match[np.random.randint(len(list(ind_match)), size=n_sf_ids)].numpy()]
sf_idx_ = list( dict.fromkeys(sf_idx_) )
else:
sf_idx_ = [i for i in sf_idx_ if i in list(ind_match)]
n_sf_ids = len(sf_idx_)
# Store all binary SF att maps to show them all at once in the end
all_att_bin1 = []
all_att_bin2 = []
for n, i in enumerate(sf_idx_):
# all_atts[n].append(attn[j][scale_id][0,i,:,:].numpy())
att_heat = np.array(attns1[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
# print(att_heat_bin)
all_att_bin1.append(att_heat_bin)
att_heat = np.array(attns2[0,i,:,:].numpy(), dtype=np.float32)
att_heat = np.uint8(att_heat / np.max(att_heat[:]) * 255.0)
att_heat_bin = np.where(att_heat>threshold, 255, 0)
all_att_bin2.append(att_heat_bin)
fin_img = []
img1rsz = np.copy(im1_cv)
print('im1:', im1.size)
print('img1rsz:', img1rsz.shape)
for j, att in enumerate(all_att_bin1):
att = cv2.resize(att, im1.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(shape)
# att = resize(att, im1.size)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j]
# col_ = col.colors[j] if j < 7 else col.colors[j+1]
# if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img1rsz[m,n, :] = col_[::-1]
img2rsz = np.copy(im2_cv)
print('im2:', im2.size)
print('img2rsz:', img2rsz.shape)
for j, att in enumerate(all_att_bin2):
att = cv2.resize(att, im2.size, interpolation=cv2.INTER_NEAREST)
# att = cv2.resize(att, imgz[i].shape[:2][::-1], interpolation=cv2.INTER_CUBIC)
# # att = cv2.resize(att, imgz[i].shape[:2][::-1])
# att = att.resize(im2.shape)
# print('att:', att.shape)
mask2d = zip(*np.where(att==255))
for m,n in mask2d:
col_ = col.colors[j]
# col_ = col.colors[j] if j < 7 else col.colors[j+1]
# if j == 0: col_ = col.colors[9]
col_ = 255*np.array(colors.to_rgba(col_))[:3]
img2rsz[m,n, :] = col_[::-1]
fig1 = plt.figure(1)
plt.imshow(cv2.cvtColor(img1rsz, cv2.COLOR_BGR2RGB))
ax1 = plt.gca()
# ax1.axis('scaled')
ax1.axis('off')
plt.tight_layout()
# fig1.canvas.draw()
fig2 = plt.figure(2)
plt.imshow(cv2.cvtColor(img2rsz, cv2.COLOR_BGR2RGB))
ax2 = plt.gca()
# ax2.axis('scaled')
ax2.axis('off')
plt.tight_layout()
# fig2.canvas.draw()
f = lambda m,c: plt.plot([],[],marker=m, color=c, ls="none")[0]
handles = [f("s", col.colors[i]) for i in range(n_sf_ids)]
fig_leg = plt.figure(3)
legend = plt.legend(handles, sf_idx_, framealpha=1, frameon=False, facecolor='w',fontsize=25, loc="center")
# fig_leg = legend.figure
# fig_leg.canvas.draw()
ax3 = plt.gca()
# ax2.axis('scaled')
ax3.axis('off')
plt.tight_layout()
# bbox = legend.get_window_extent().transformed(fig.dpi_scale_trans.inverted())
im1 = None
im2 = None
return fig1, fig2, fig_leg
# ','.join(map(str, sf_idx_))
# GRADIO APP
title = "Visualizing Super-features"
description = "This is a visualization demo for the ICLR 2022 paper <b><a href='https://github.com/naver/fire' target='_blank'>Learning Super-Features for Image Retrieval</a></p></b>"
article = "<p style='text-align: center'><a href='https://github.com/naver/fire' target='_blank'>Original Github Repo</a></p>"
iface = gr.Interface(
fn=generate_matching_superfeatures,
inputs=[
gr.inputs.Image(shape=(1024, 1024), type="pil", label="First Image"),
gr.inputs.Image(shape=(1024, 1024), type="pil", label="Second Image"),
# gr.inputs.Image(type="pil", label="First Image"),
# gr.inputs.Image(type="pil", label="Second Image"),
gr.inputs.Checkbox(default=False, label="ImageNet Model (Default: SfM-120k)"),
gr.inputs.Slider(minimum=0, maximum=6, step=1, default=4, label="Scale"),
gr.inputs.Slider(minimum=0, maximum=255, step=25, default=150, label="Binarization Threshold"),
gr.inputs.Checkbox(default=True, label="Show random (matching) SFs"),
gr.inputs.Textbox(lines=1, default="", label="...or show specific SF IDs:", optional=True),
# gr.inputs.Checkbox(default=True, label="Show only matching SFs"),
],
outputs=[
gr.outputs.Image(type="plot", label="First Image SFs"),
gr.outputs.Image(type="plot", label="Second Image SFs"),
gr.outputs.Image(type="plot", label="SF legend")],
# gr.outputs.Textbox(label="SFs")],
# outputs=gr.outputs.Image(shape=(1024,2048), type="plot"),
title=title,
theme='peach',
layout="horizontal",
description=description,
article=article,
examples=[
["chateau_1.png", "chateau_2.png", False, 3, 150, False, '170,15,25,63,193,125,92,214,107'],
# ["anafi1.jpeg", "anafi2.jpeg", False, 4, 150, False, '178,190,144,47,241, 172'],
["areopoli1.jpeg", "areopoli2.jpeg", False, 4, 150, False, '205,2,163,130'],
["jaipur1.jpeg", "jaipur2.jpeg", False, 4, 50, False, '51,206,216,49,27'],
["basil1.jpeg", "basil2.jpeg", True, 4, 100, False, '75,152,19,36,156'],
["mill1.jpeg", "mill2.jpeg", False, 4, 150, False, '170,190,151,155,177'],
]
)
iface.launch(enable_queue=True)