YannisK commited on
Commit
32408ed
·
1 Parent(s): bb3ea39

temp state

Browse files
Files changed (42) hide show
  1. LICENSE +85 -0
  2. README.md +1 -13
  3. chateau_1.png +0 -0
  4. chateau_2.png +0 -0
  5. fire.pth +3 -0
  6. how/__init__.py +4 -0
  7. how/layers/__init__.py +5 -0
  8. how/layers/__pycache__/__init__.cpython-37.pyc +0 -0
  9. how/layers/__pycache__/attention.cpython-37.pyc +0 -0
  10. how/layers/__pycache__/dim_reduction.cpython-37.pyc +0 -0
  11. how/layers/__pycache__/functional.cpython-37.pyc +0 -0
  12. how/layers/__pycache__/pooling.cpython-37.pyc +0 -0
  13. how/layers/attention.py +10 -0
  14. how/layers/dim_reduction.py +29 -0
  15. how/layers/functional.py +73 -0
  16. how/layers/pooling.py +19 -0
  17. how/networks/__init__.py +5 -0
  18. how/networks/__pycache__/__init__.cpython-37.pyc +0 -0
  19. how/networks/__pycache__/how_net.cpython-37.pyc +0 -0
  20. how/networks/how_net.py +221 -0
  21. how/stages/__init__.py +5 -0
  22. how/stages/evaluate.py +314 -0
  23. how/stages/train.py +241 -0
  24. how/utils/__init__.py +3 -0
  25. how/utils/__pycache__/__init__.cpython-37.pyc +0 -0
  26. how/utils/__pycache__/data_helpers.cpython-37.pyc +0 -0
  27. how/utils/__pycache__/download.cpython-37.pyc +0 -0
  28. how/utils/__pycache__/html.cpython-37.pyc +0 -0
  29. how/utils/__pycache__/io_helpers.cpython-37.pyc +0 -0
  30. how/utils/__pycache__/score_helpers.cpython-37.pyc +0 -0
  31. how/utils/__pycache__/visualize.cpython-37.pyc +0 -0
  32. how/utils/__pycache__/whitening.cpython-37.pyc +0 -0
  33. how/utils/data_helpers.py +90 -0
  34. how/utils/download.py +44 -0
  35. how/utils/html.py +252 -0
  36. how/utils/io_helpers.py +105 -0
  37. how/utils/logging.py +63 -0
  38. how/utils/plots.py +37 -0
  39. how/utils/score_helpers.py +59 -0
  40. how/utils/visualize.py +99 -0
  41. how/utils/whitening.py +36 -0
  42. requirements.txt +5 -0
LICENSE ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FIRe, Copyright (c) 2021-2022 Naver Corporation, is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license.
2
+
3
+ A summary of the CC BY-NC-SA 4.0 license is located here:
4
+ https://creativecommons.org/licenses/by-nc-sa/4.0/
5
+
6
+ The CC BY-NC-SA 4.0 license is located here:
7
+ https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
8
+
9
+
10
+ SEE NOTICE BELOW WITH RESPECT TO THE FILE: train.py and evaluate.py
11
+ SEE NOTICE BELOW WITH RESPECT TO THE FILES in folder how/
12
+
13
+ **********************************
14
+
15
+
16
+ NOTICE WITH RESPECT TO THE FILE: train.py and evaluate.py
17
+
18
+
19
+ This software is being redistributed in a modifiled form. The original form is available here:
20
+
21
+ https://github.com/gtolias/how
22
+
23
+
24
+ ORIGINAL COPYRIGHT NOTICE AND PERMISSION NOTICE AVAILABLE HERE IS REPRODUCE BELOW:
25
+
26
+ https://github.com/gtolias/how/blob/master/LICENSE
27
+
28
+
29
+ MIT License
30
+
31
+ Copyright (c) 2020 Giorgos Tolias, Tomas Jenicek
32
+
33
+ Permission is hereby granted, free of charge, to any person obtaining a copy
34
+ of this software and associated documentation files (the "Software"), to deal
35
+ in the Software without restriction, including without limitation the rights
36
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
37
+ copies of the Software, and to permit persons to whom the Software is
38
+ furnished to do so, subject to the following conditions:
39
+ The above copyright notice and this permission notice shall be included in all
40
+ copies or substantial portions of the Software.
41
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
42
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
43
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
44
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
45
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
46
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
47
+ SOFTWARE.
48
+
49
+
50
+
51
+ **********************************
52
+
53
+ SEE NOTICE BELOW WITH RESPECT TO THE FILES in folder how/
54
+
55
+ This project contains subcomponents with separate copyright notices and license terms.
56
+ Your use of the source code for these subcomponents is subject to the terms and conditions of the following licenses.
57
+
58
+ ====
59
+
60
+ gtolias/how
61
+ https://github.com/gtolias/how
62
+
63
+ MIT License
64
+
65
+ Copyright (c) 2020 Giorgos Tolias, Tomas Jenicek
66
+
67
+ Permission is hereby granted, free of charge, to any person obtaining a copy
68
+ of this software and associated documentation files (the "Software"), to deal
69
+ in the Software without restriction, including without limitation the rights
70
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
71
+ copies of the Software, and to permit persons to whom the Software is
72
+ furnished to do so, subject to the following conditions:
73
+
74
+ The above copyright notice and this permission notice shall be included in all
75
+ copies or substantial portions of the Software.
76
+
77
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
78
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
79
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
80
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
81
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
82
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
83
+ SOFTWARE.
84
+
85
+ ====
README.md CHANGED
@@ -1,13 +1 @@
1
- ---
2
- title: Superfeatures
3
- emoji: 🏢
4
- colorFrom: blue
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 2.9.1
8
- app_file: app.py
9
- pinned: false
10
- license: cc-by-nc-sa-4.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
 
1
+ TBD
 
 
 
 
 
 
 
 
 
 
 
 
chateau_1.png ADDED
chateau_2.png ADDED
fire.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ddeb04ebdd5ca3e7a9d86ce6a5dec5dabfbb23a70a6f3d0907b17e484474202
3
+ size 52765649
how/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ """
2
+ Official Python implementation of HOW method for ECCV 2020 paper "Learning and aggregating deep
3
+ local descriptors for instance-level recognition"
4
+ """
how/layers/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """
2
+ Modules implementing layers in pytorch by inheriting from torch.nn.Module
3
+ """
4
+
5
+ from . import attention, dim_reduction, pooling
how/layers/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (281 Bytes). View file
 
how/layers/__pycache__/attention.cpython-37.pyc ADDED
Binary file (643 Bytes). View file
 
how/layers/__pycache__/dim_reduction.cpython-37.pyc ADDED
Binary file (1.46 kB). View file
 
how/layers/__pycache__/functional.cpython-37.pyc ADDED
Binary file (2.89 kB). View file
 
how/layers/__pycache__/pooling.cpython-37.pyc ADDED
Binary file (928 Bytes). View file
 
how/layers/attention.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ """Layers producing a 2D attention map from a feature map"""
2
+
3
+ from torch import nn
4
+
5
+
6
+ class L2Attention(nn.Module):
7
+ """Compute the attention as L2-norm of local descriptors"""
8
+
9
+ def forward(self, x):
10
+ return (x.pow(2.0).sum(1) + 1e-10).sqrt().squeeze(0)
how/layers/dim_reduction.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Layers implementing dimensionality reduction of a feature map"""
2
+
3
+ import torch
4
+ from torch import nn
5
+
6
+ from ..utils import whitening
7
+
8
+
9
+ class ConvDimReduction(nn.Conv2d):
10
+ """Dimensionality reduction as a convolutional layer
11
+
12
+ :param int input_dim: Network out_channels
13
+ :param in dim: Whitening out_channels, for dimensionality reduction
14
+ """
15
+
16
+ def __init__(self, input_dim, dim):
17
+ super().__init__(input_dim, dim, (1, 1), padding=0, bias=True)
18
+
19
+ def initialize_pca_whitening(self, des):
20
+ """Initialize PCA whitening from given descriptors. Return tuple of shift and projection."""
21
+ m, P = whitening.pcawhitenlearn_shrinkage(des)
22
+ m, P = m.T, P.T
23
+
24
+ projection = torch.Tensor(P[:self.weight.shape[0], :]).unsqueeze(-1).unsqueeze(-1)
25
+ self.weight.data = projection.to(self.weight.device)
26
+
27
+ projected_shift = -torch.mm(torch.FloatTensor(P), torch.FloatTensor(m)).squeeze()
28
+ self.bias.data = projected_shift[:self.weight.shape[0]].to(self.bias.device)
29
+ return m.T, P.T
how/layers/functional.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Layer functions"""
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+
6
+ import cirtorch.layers.functional as CF
7
+
8
+
9
+ def smoothing_avg_pooling(feats, kernel_size):
10
+ """Smoothing average pooling
11
+
12
+ :param torch.Tensor feats: Feature map
13
+ :param int kernel_size: kernel size of pooling
14
+ :return torch.Tensor: Smoothend feature map
15
+ """
16
+ pad = kernel_size // 2
17
+ return F.avg_pool2d(feats, (kernel_size, kernel_size), stride=1, padding=pad,
18
+ count_include_pad=False)
19
+
20
+
21
+ def weighted_spoc(ms_feats, ms_weights):
22
+ """Weighted SPoC pooling, summed over scales.
23
+
24
+ :param list ms_feats: A list of feature maps, each at a different scale
25
+ :param list ms_weights: A list of weights, each at a different scale
26
+ :return torch.Tensor: L2-normalized global descriptor
27
+ """
28
+ desc = torch.zeros((1, ms_feats[0].shape[1]), dtype=torch.float32, device=ms_feats[0].device)
29
+ for feats, weights in zip(ms_feats, ms_weights):
30
+ desc += (feats * weights).sum((-2, -1)).squeeze()
31
+ return CF.l2n(desc)
32
+
33
+
34
+ def how_select_local(ms_feats, ms_masks, *, scales, features_num):
35
+ """Convert multi-scale feature maps with attentions to a list of local descriptors
36
+
37
+ :param list ms_feats: A list of feature maps, each at a different scale
38
+ :param list ms_masks: A list of attentions, each at a different scale
39
+ :param list scales: A list of scales (floats)
40
+ :param int features_num: Number of features to be returned (sorted by attenions)
41
+ :return tuple: A list of descriptors, attentions, locations (x_coor, y_coor) and scales where
42
+ elements from each list correspond to each other
43
+ """
44
+ device = ms_feats[0].device
45
+ size = sum(x.shape[0] * x.shape[1] for x in ms_masks)
46
+
47
+ desc = torch.zeros(size, ms_feats[0].shape[1], dtype=torch.float32, device=device)
48
+ atts = torch.zeros(size, dtype=torch.float32, device=device)
49
+ locs = torch.zeros(size, 2, dtype=torch.int16, device=device)
50
+ scls = torch.zeros(size, dtype=torch.float16, device=device)
51
+
52
+ pointer = 0
53
+ for sc, vs, ms in zip(scales, ms_feats, ms_masks):
54
+ if len(ms.shape) == 0:
55
+ continue
56
+
57
+ height, width = ms.shape
58
+ numel = torch.numel(ms)
59
+ slc = slice(pointer, pointer+numel)
60
+ pointer += numel
61
+
62
+ desc[slc] = vs.squeeze(0).reshape(vs.shape[1], -1).T
63
+ atts[slc] = ms.reshape(-1)
64
+ width_arr = torch.arange(width, dtype=torch.int16)
65
+ locs[slc, 0] = width_arr.repeat(height).to(device) # x axis
66
+ height_arr = torch.arange(height, dtype=torch.int16)
67
+ locs[slc, 1] = height_arr.view(-1, 1).repeat(1, width).reshape(-1).to(device) # y axis
68
+ scls[slc] = sc
69
+
70
+ keep_n = min(features_num, atts.shape[0]) if features_num is not None else atts.shape[0]
71
+ idx = atts.sort(descending=True)[1][:keep_n]
72
+
73
+ return desc[idx], atts[idx], locs[idx], scls[idx]
how/layers/pooling.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Spatial pooling layers"""
2
+
3
+ from torch import nn
4
+
5
+ from . import functional as LF
6
+
7
+
8
+ class SmoothingAvgPooling(nn.Module):
9
+ """Average pooling that smoothens the feature map, keeping its size
10
+
11
+ :param int kernel_size: Kernel size of given pooling (e.g. 3)
12
+ """
13
+
14
+ def __init__(self, kernel_size):
15
+ super().__init__()
16
+ self.kernel_size = kernel_size
17
+
18
+ def forward(self, x):
19
+ return LF.smoothing_avg_pooling(x, kernel_size=self.kernel_size)
how/networks/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """
2
+ Pytorch networks
3
+ """
4
+
5
+ from . import how_net
how/networks/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (182 Bytes). View file
 
how/networks/__pycache__/how_net.cpython-37.pyc ADDED
Binary file (8.49 kB). View file
 
how/networks/how_net.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module of the HOW method"""
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torchvision
7
+
8
+ from cirtorch.networks import imageretrievalnet
9
+
10
+ from .. import layers
11
+ from ..layers import functional as HF
12
+ from ..utils import io_helpers
13
+
14
+ NUM_WORKERS = 6
15
+
16
+ CORERCF_SIZE = {
17
+ 'resnet18': 32,
18
+ 'resnet50': 32,
19
+ 'resnet101': 32,
20
+ }
21
+
22
+
23
+ class HOWNet(nn.Module):
24
+ """Network for the HOW method
25
+
26
+ :param list features: A list of torch.nn.Module which act as feature extractor
27
+ :param torch.nn.Module attention: Attention layer
28
+ :param torch.nn.Module smoothing: Smoothing layer
29
+ :param torch.nn.Module dim_reduction: Dimensionality reduction layer
30
+ :param dict meta: Metadata that are stored with the network
31
+ :param dict runtime: Runtime options that can be used as default for e.g. inference
32
+ """
33
+
34
+ def __init__(self, features, attention, smoothing, dim_reduction, meta, runtime):
35
+ super().__init__()
36
+
37
+ self.features = features
38
+ self.attention = attention
39
+ self.smoothing = smoothing
40
+ self.dim_reduction = dim_reduction
41
+
42
+ self.meta = meta
43
+ self.runtime = runtime
44
+
45
+
46
+ def copy_excluding_dim_reduction(self):
47
+ """Return a copy of this network without the dim_reduction layer"""
48
+ meta = {**self.meta, "outputdim": self.meta['backbone_dim']}
49
+ return self.__class__(self.features, self.attention, self.smoothing, None, meta, self.runtime)
50
+
51
+ def copy_with_runtime(self, runtime):
52
+ """Return a copy of this network with a different runtime dict"""
53
+ return self.__class__(self.features, self.attention, self.smoothing, self.dim_reduction, self.meta, runtime)
54
+
55
+
56
+ # Methods of nn.Module
57
+
58
+ @staticmethod
59
+ def _set_batchnorm_eval(mod):
60
+ if mod.__class__.__name__.find('BatchNorm') != -1:
61
+ # freeze running mean and std
62
+ mod.eval()
63
+
64
+ def train(self, mode=True):
65
+ res = super().train(mode)
66
+ if mode:
67
+ self.apply(HOWNet._set_batchnorm_eval)
68
+ return res
69
+
70
+ def parameter_groups(self, optimizer_opts):
71
+ """Return torch parameter groups"""
72
+ layers = [self.features, self.attention, self.smoothing]
73
+ parameters = [{'params': x.parameters()} for x in layers if x is not None]
74
+ if self.dim_reduction:
75
+ # Do not update dimensionality reduction layer
76
+ parameters.append({'params': self.dim_reduction.parameters(), 'lr': 0.0})
77
+ return parameters
78
+
79
+
80
+ # Forward
81
+
82
+ def features_attentions(self, x, *, scales):
83
+ """Return a tuple (features, attentions) where each is a list containing requested scales"""
84
+ feats = []
85
+ masks = []
86
+ for s in scales:
87
+ xs = nn.functional.interpolate(x, scale_factor=s, mode='bilinear', align_corners=False)
88
+ o = self.features(xs)
89
+ m = self.attention(o)
90
+ if self.smoothing:
91
+ o = self.smoothing(o)
92
+ if self.dim_reduction:
93
+ o = self.dim_reduction(o)
94
+ feats.append(o)
95
+ masks.append(m)
96
+
97
+ # Normalize max weight to 1
98
+ mx = max(x.max() for x in masks)
99
+ masks = [x/mx for x in masks]
100
+
101
+ return feats, masks
102
+
103
+ def forward(self, x):
104
+ return self.forward_global(x, scales=self.runtime['training_scales'])
105
+
106
+ def forward_global(self, x, *, scales):
107
+ """Return global descriptor"""
108
+ feats, masks = self.features_attentions(x, scales=scales)
109
+ return HF.weighted_spoc(feats, masks)
110
+
111
+ def forward_local(self, x, *, features_num, scales):
112
+ """Return local descriptors"""
113
+ feats, masks = self.features_attentions(x, scales=scales)
114
+ return HF.how_select_local(feats, masks, scales=scales, features_num=features_num)
115
+
116
+
117
+ # String conversion
118
+
119
+ def __repr__(self):
120
+ meta_str = "\n".join(" %s: %s" % x for x in self.meta.items())
121
+ return "%s(meta={\n%s\n})" % (self.__class__.__name__, meta_str)
122
+
123
+ def meta_repr(self):
124
+ """Return meta representation"""
125
+ return str(self)
126
+
127
+
128
+ def init_network(architecture, pretrained, skip_layer, dim_reduction, smoothing, runtime):
129
+ """Initialize HOW network
130
+
131
+ :param str architecture: Network backbone architecture (e.g. resnet18)
132
+ :param bool pretrained: Whether to start with a network pretrained on ImageNet
133
+ :param int skip_layer: How many layers of blocks should be skipped (from the end)
134
+ :param dict dim_reduction: Options for the dimensionality reduction layer
135
+ :param dict smoothing: Options for the smoothing layer
136
+ :param dict runtime: Runtime options to be stored in the network
137
+ :return HOWNet: Initialized network
138
+ """
139
+ # Take convolutional layers as features, always ends with ReLU to make last activations non-negative
140
+ net_in = getattr(torchvision.models, architecture)(pretrained=pretrained)
141
+ if architecture.startswith('alexnet') or architecture.startswith('vgg'):
142
+ features = list(net_in.features.children())[:-1]
143
+ elif architecture.startswith('resnet'):
144
+ features = list(net_in.children())[:-2]
145
+ elif architecture.startswith('densenet'):
146
+ features = list(net_in.features.children()) + [nn.ReLU(inplace=True)]
147
+ elif architecture.startswith('squeezenet'):
148
+ features = list(net_in.features.children())
149
+ else:
150
+ raise ValueError('Unsupported or unknown architecture: {}!'.format(architecture))
151
+
152
+ if skip_layer > 0:
153
+ features = features[:-skip_layer]
154
+ backbone_dim = imageretrievalnet.OUTPUT_DIM[architecture] // (2 ** skip_layer)
155
+
156
+ att_layer = layers.attention.L2Attention()
157
+ smooth_layer = None
158
+ if smoothing:
159
+ smooth_layer = layers.pooling.SmoothingAvgPooling(**smoothing)
160
+ reduction_layer = None
161
+ if dim_reduction:
162
+ reduction_layer = layers.dim_reduction.ConvDimReduction(**dim_reduction, input_dim=backbone_dim)
163
+
164
+ meta = {
165
+ "architecture": architecture,
166
+ "backbone_dim": backbone_dim,
167
+ "outputdim": reduction_layer.out_channels if dim_reduction else backbone_dim,
168
+ "corercf_size": CORERCF_SIZE[architecture] // (2 ** skip_layer),
169
+ }
170
+ return HOWNet(nn.Sequential(*features), att_layer, smooth_layer, reduction_layer, meta, runtime)
171
+
172
+
173
+ def extract_vectors(net, dataset, device, *, scales):
174
+ """Return global descriptors in torch.Tensor"""
175
+ net.eval()
176
+ loader = torch.utils.data.DataLoader(dataset, shuffle=False, pin_memory=True, num_workers=NUM_WORKERS)
177
+
178
+ with torch.no_grad():
179
+ vecs = torch.zeros(len(loader), net.meta['outputdim'])
180
+ for i, inp in io_helpers.progress(enumerate(loader), size=len(loader), print_freq=100):
181
+ vecs[i] = net.forward_global(inp.to(device), scales=scales).cpu().squeeze()
182
+
183
+ return vecs
184
+
185
+
186
+ def extract_vectors_local(net, dataset, device, *, features_num, scales):
187
+ """Return tuple (local descriptors, image ids, strenghts, locations and scales) where locations
188
+ consists of (coor_x, coor_y, scale) and elements of each list correspond to each other"""
189
+ net.eval()
190
+ loader = torch.utils.data.DataLoader(dataset, shuffle=False, pin_memory=True, num_workers=NUM_WORKERS)
191
+
192
+ with torch.no_grad():
193
+ vecs, strengths, locs, scls, imids = [], [], [], [], []
194
+ for imid, inp in io_helpers.progress(enumerate(loader), size=len(loader), print_freq=100):
195
+ output = net.forward_local(inp.to(device), features_num=features_num, scales=scales)
196
+
197
+ vecs.append(output[0].cpu().numpy())
198
+ strengths.append(output[1].cpu().numpy())
199
+ locs.append(output[2].cpu().numpy())
200
+ scls.append(output[3].cpu().numpy())
201
+ imids.append(np.full((output[0].shape[0],), imid))
202
+
203
+ return np.vstack(vecs), np.hstack(imids), np.hstack(strengths), np.vstack(locs), np.hstack(scls)
204
+
205
+
206
+
207
+ def extract_vectors_all(net, dataset, device, *, features_num, scales):
208
+ """Return tuple (local descriptors, image ids, strenghts, locations and scales) where locations
209
+ consists of (coor_x, coor_y, scale) and elements of each list correspond to each other"""
210
+ net.eval()
211
+ loader = torch.utils.data.DataLoader(dataset, shuffle=False, pin_memory=True, num_workers=NUM_WORKERS)
212
+
213
+ with torch.no_grad():
214
+ feats, attns, strenghts = [], [], []
215
+ for imid, inp in io_helpers.progress(enumerate(loader), size=len(loader), print_freq=100):
216
+ output = net.get_superfeatures(inp.to(device), scales=scales)
217
+ feats.append(output[0])
218
+ attns.append(output[1])
219
+ strenghts.append(output[2])
220
+
221
+ return feats, attns, strenghts
how/stages/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """
2
+ Implementation of different network stages, such as training and evaluation
3
+ """
4
+
5
+ from . import evaluate, train
how/stages/evaluate.py ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implements evaluation of trained models"""
2
+
3
+ import time
4
+ import warnings
5
+ from pathlib import Path
6
+ import pickle
7
+ import numpy as np
8
+ import torch
9
+ from torchvision import transforms
10
+ from PIL import ImageFile
11
+
12
+ from cirtorch.datasets.genericdataset import ImagesFromList
13
+
14
+ from asmk import asmk_method, kernel as kern_pkg
15
+ from ..networks import how_net
16
+ from ..utils import score_helpers, data_helpers, logging
17
+
18
+ ImageFile.LOAD_TRUNCATED_IMAGES = True
19
+ warnings.filterwarnings("ignore", r"^Possibly corrupt EXIF data", category=UserWarning)
20
+
21
+
22
+ def evaluate_demo(demo_eval, evaluation, globals):
23
+ """Demo evaluating a trained network
24
+
25
+ :param dict demo_eval: Demo-related options
26
+ :param dict evaluation: Evaluation-related options
27
+ :param dict globals: Global options
28
+ """
29
+ globals["device"] = torch.device("cpu")
30
+ if demo_eval['gpu_id'] is not None:
31
+ globals["device"] = torch.device(("cuda:%s" % demo_eval['gpu_id']))
32
+
33
+ # Handle net_path when directory
34
+ net_path = Path(demo_eval['exp_folder']) / demo_eval['net_path']
35
+ if net_path.is_dir() and (net_path / "epochs/model_best.pth").exists():
36
+ net_path = net_path / "epochs/model_best.pth"
37
+
38
+ # Load net
39
+ state = _convert_checkpoint(torch.load(net_path, map_location='cpu'))
40
+ net = how_net.init_network(**state['net_params']).to(globals['device'])
41
+ net.load_state_dict(state['state_dict'])
42
+ globals["transform"] = transforms.Compose([transforms.ToTensor(), \
43
+ transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
44
+
45
+ # Eval
46
+ if evaluation['global_descriptor']['datasets']:
47
+ eval_global(net, evaluation['inference'], globals, **evaluation['global_descriptor'])
48
+
49
+ if evaluation['multistep']:
50
+ eval_asmk_multistep(net, evaluation['inference'], evaluation['multistep'], globals, **evaluation['local_descriptor'])
51
+ elif evaluation['local_descriptor']['datasets']:
52
+ eval_asmk(net, evaluation['inference'], globals, **evaluation['local_descriptor'])
53
+
54
+
55
+ def eval_global(net, inference, globals, *, datasets):
56
+ """Evaluate global descriptors"""
57
+ net.eval()
58
+ time0 = time.time()
59
+ logger = globals["logger"]
60
+ logger.info("Starting global evaluation")
61
+
62
+ results = {}
63
+ for dataset in datasets:
64
+ images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
65
+ logger.info(f"Evaluating {dataset}")
66
+
67
+ with logging.LoggingStopwatch("extracting database images", logger.info, logger.debug):
68
+ dset = ImagesFromList(root='', images=images, imsize=inference['image_size'], bbxs=None,
69
+ transform=globals['transform'])
70
+ vecs = how_net.extract_vectors(net, dset, globals["device"], scales=inference['scales'])
71
+ with logging.LoggingStopwatch("extracting query images", logger.info, logger.debug):
72
+ qdset = ImagesFromList(root='', images=qimages, imsize=inference['image_size'], bbxs=bbxs,
73
+ transform=globals['transform'])
74
+ qvecs = how_net.extract_vectors(net, qdset, globals["device"], scales=inference['scales'])
75
+
76
+ vecs, qvecs = vecs.numpy(), qvecs.numpy()
77
+ ranks = np.argsort(-np.dot(vecs, qvecs.T), axis=0)
78
+ results[dataset] = score_helpers.compute_map_and_log(dataset, ranks, gnd, logger=logger)
79
+
80
+ logger.info(f"Finished global evaluation in {int(time.time()-time0) // 60} min")
81
+ return results
82
+
83
+
84
+ def eval_asmk(net, inference, globals, *, datasets, codebook_training, asmk):
85
+ """Evaluate local descriptors with ASMK"""
86
+ net.eval()
87
+ time0 = time.time()
88
+ logger = globals["logger"]
89
+ logger.info("Starting asmk evaluation")
90
+
91
+ asmk = asmk_method.ASMKMethod.initialize_untrained(asmk)
92
+ asmk = asmk_train_codebook(net, inference, globals, logger, codebook_training=codebook_training,
93
+ asmk=asmk, cache_path=None)
94
+
95
+ results = {}
96
+ for dataset in datasets:
97
+ dataset_name = dataset if isinstance(dataset, str) else dataset['name']
98
+ images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
99
+ logger.info(f"Evaluating '{dataset_name}'")
100
+
101
+ asmk_dataset = asmk_index_database(net, inference, globals, logger, asmk=asmk, images=images)
102
+ asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
103
+ qimages=qimages, bbxs=bbxs, gnd=gnd, results=results,
104
+ cache_path=globals["exp_path"] / "query_results.pkl")
105
+
106
+ logger.info(f"Finished asmk evaluation in {int(time.time()-time0) // 60} min")
107
+ return results
108
+
109
+
110
+ def eval_asmk_multistep(net, inference, multistep, globals, *, datasets, codebook_training, asmk):
111
+ """Evaluate local descriptors with ASMK"""
112
+ valid_steps = ["train_codebook", "aggregate_database", "build_ivf", "query_ivf", "aggregate_build_query"]
113
+ assert multistep['step'] in valid_steps, multistep['step']
114
+
115
+ net.eval()
116
+ time0 = time.time()
117
+ logger = globals["logger"]
118
+ (globals["exp_path"] / "eval").mkdir(exist_ok=True)
119
+ logger.info(f"Starting asmk evaluation step '{multistep['step']}'")
120
+
121
+ # Handle partitioning
122
+ partition = {"suffix": "", "norm_start": 0, "norm_end": 1}
123
+ if multistep.get("partition"):
124
+ total, index = multistep['partition']
125
+ partition = {"suffix": f":{total}_{str(index).zfill(len(str(total-1)))}",
126
+ "norm_start": index / total,
127
+ "norm_end": (index+1) / total}
128
+ if multistep['step'] == "aggregate_database" or multistep['step'] == "query_ivf":
129
+ logger.info(f"Processing partition '{total}_{index}'")
130
+
131
+ # Handle distractors
132
+ distractors_path = None
133
+ distractors = multistep.get("distractors")
134
+ if distractors:
135
+ distractors_path = globals["exp_path"] / f"eval/{distractors}.ivf.pkl"
136
+
137
+ # Train codebook
138
+ asmk = asmk_method.ASMKMethod.initialize_untrained(asmk)
139
+ cdb_path = globals["exp_path"] / "eval/codebook.pkl"
140
+ if multistep['step'] == "train_codebook":
141
+ asmk_train_codebook(net, inference, globals, logger, codebook_training=codebook_training,
142
+ asmk=asmk, cache_path=cdb_path)
143
+ return None
144
+
145
+ asmk = asmk.train_codebook(None, cache_path=cdb_path)
146
+
147
+ results = {}
148
+ for dataset in datasets:
149
+ dataset_name = database_name = dataset if isinstance(dataset, str) else dataset['name']
150
+ if distractors and multistep['step'] != "aggregate_database":
151
+ dataset_name = f"{distractors}_{database_name}"
152
+ images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root=globals['root_path'])
153
+ logger.info(f"Processing dataset '{dataset_name}'")
154
+
155
+ # Infer database
156
+ if multistep['step'] == "aggregate_database":
157
+ agg_path = globals["exp_path"] / f"eval/{database_name}.agg{partition['suffix']}.pkl"
158
+ asmk_aggregate_database(net, inference, globals, logger, asmk=asmk, images=images,
159
+ partition=partition, cache_path=agg_path)
160
+
161
+ # Build ivf
162
+ elif multistep['step'] == "build_ivf":
163
+ ivf_path = globals["exp_path"] / f"eval/{dataset_name}.ivf.pkl"
164
+ asmk_build_ivf(globals, logger, asmk=asmk, cache_path=ivf_path, database_name=database_name,
165
+ distractors=distractors, distractors_path=distractors_path)
166
+
167
+ # Query ivf
168
+ elif multistep['step'] == "query_ivf":
169
+ asmk_dataset = asmk.build_ivf(None, None, cache_path=globals["exp_path"] / f"eval/{dataset_name}.ivf.pkl")
170
+ start, end = int(len(qimages)*partition['norm_start']), int(len(qimages)*partition['norm_end'])
171
+ bbxs = bbxs[start:end] if bbxs is not None else None
172
+ results_path = globals["exp_path"] / f"eval/{dataset_name}.results{partition['suffix']}.pkl"
173
+ asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
174
+ qimages=qimages[start:end], bbxs=bbxs, gnd=gnd, results=results,
175
+ cache_path=results_path, imid_offset=start)
176
+
177
+ # All 3 dataset steps
178
+ elif multistep['step'] == "aggregate_build_query":
179
+ if multistep.get("partition"):
180
+ raise NotImplementedError("Partitions within step 'aggregate_build_query' are not" \
181
+ " supported, use separate steps")
182
+ results_path = globals["exp_path"] / "query_results.pkl"
183
+ if gnd is None and results_path.exists():
184
+ logger.debug("Step results already exist")
185
+ continue
186
+ asmk_dataset = asmk_index_database(net, inference, globals, logger, asmk=asmk, images=images,
187
+ distractors_path=distractors_path)
188
+ asmk_query_ivf(net, inference, globals, logger, dataset=dataset, asmk_dataset=asmk_dataset,
189
+ qimages=qimages, bbxs=bbxs, gnd=gnd, results=results, cache_path=results_path)
190
+
191
+ logger.info(f"Finished asmk evaluation step '{multistep['step']}' in {int(time.time()-time0) // 60} min")
192
+ return results
193
+
194
+ #
195
+ # Separate steps
196
+ #
197
+
198
+ def asmk_train_codebook(net, inference, globals, logger, *, codebook_training, asmk, cache_path):
199
+ """Asmk evaluation step 'train_codebook'"""
200
+ if cache_path and cache_path.exists():
201
+ return asmk.train_codebook(None, cache_path=cache_path)
202
+
203
+ images = data_helpers.load_dataset('train', data_root=globals['root_path'])[0]
204
+ images = images[:codebook_training['images']]
205
+ dset = ImagesFromList(root='', images=images, imsize=inference['image_size'], bbxs=None,
206
+ transform=globals['transform'])
207
+ infer_opts = {"scales": codebook_training['scales'], "features_num": inference['features_num']}
208
+ des_train = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)[0]
209
+ asmk = asmk.train_codebook(des_train, cache_path=cache_path)
210
+ logger.info(f"Codebook trained in {asmk.metadata['train_codebook']['train_time']:.1f}s")
211
+ return asmk
212
+
213
+ def asmk_aggregate_database(net, inference, globals, logger, *, asmk, images, partition, cache_path):
214
+ """Asmk evaluation step 'aggregate_database'"""
215
+ if cache_path.exists():
216
+ logger.debug("Step results already exist")
217
+ return
218
+ codebook = asmk.codebook
219
+ kernel = kern_pkg.ASMKKernel(codebook, **asmk.params['build_ivf']['kernel'])
220
+ start, end = int(len(images)*partition['norm_start']), int(len(images)*partition['norm_end'])
221
+ data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
222
+ infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
223
+ # Aggregate database
224
+ dset = ImagesFromList(root='', images=images[start:end], bbxs=None, **data_opts)
225
+ vecs, imids, *_ = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)
226
+ imids += start
227
+ quantized = codebook.quantize(vecs, imids, **asmk.params["build_ivf"]["quantize"])
228
+ aggregated = kernel.aggregate(*quantized, **asmk.params["build_ivf"]["aggregate"])
229
+ with cache_path.open("wb") as handle:
230
+ pickle.dump(dict(zip(["des", "word_ids", "image_ids"], aggregated)), handle)
231
+
232
+ def asmk_build_ivf(globals, logger, *, asmk, cache_path, database_name, distractors, distractors_path):
233
+ """Asmk evaluation step 'build_ivf'"""
234
+ if cache_path.exists():
235
+ logger.debug("Step results already exist")
236
+ return asmk.build_ivf(None, None, cache_path=cache_path)
237
+ builder = asmk.create_ivf_builder(cache_path=cache_path)
238
+ # Build ivf
239
+ if not builder.loaded_from_cache:
240
+ if distractors:
241
+ builder.initialize_with_distractors(distractors_path)
242
+ logger.debug(f"Loaded ivf with distractors '{distractors}'")
243
+ for path in sorted(globals["exp_path"].glob(f"eval/{database_name}.agg*.pkl")):
244
+ with path.open("rb") as handle:
245
+ des = pickle.load(handle)
246
+ builder.ivf.add(des['des'], des['word_ids'], des['image_ids'])
247
+ logger.info(f"Indexed '{path.name}'")
248
+ asmk_dataset = asmk.add_ivf_builder(builder)
249
+ logger.debug(f"IVF stats: {asmk_dataset.metadata['build_ivf']['ivf_stats']}")
250
+ return asmk_dataset
251
+
252
+ def asmk_index_database(net, inference, globals, logger, *, asmk, images, distractors_path=None):
253
+ """Asmk evaluation step 'aggregate_database' and 'build_ivf'"""
254
+ data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
255
+ infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
256
+ # Index database vectors
257
+ dset = ImagesFromList(root='', images=images, bbxs=None, **data_opts)
258
+ vecs, imids, *_ = how_net.extract_vectors_local(net, dset, globals["device"], **infer_opts)
259
+ asmk_dataset = asmk.build_ivf(vecs, imids, distractors_path=distractors_path)
260
+ logger.info(f"Indexed images in {asmk_dataset.metadata['build_ivf']['index_time']:.2f}s")
261
+ logger.debug(f"IVF stats: {asmk_dataset.metadata['build_ivf']['ivf_stats']}")
262
+ return asmk_dataset
263
+
264
+ def asmk_query_ivf(net, inference, globals, logger, *, dataset, asmk_dataset, qimages, bbxs, gnd,
265
+ results, cache_path, imid_offset=0):
266
+ """Asmk evaluation step 'query_ivf'"""
267
+ if gnd is None and cache_path and cache_path.exists():
268
+ logger.debug("Step results already exist")
269
+ return
270
+ data_opts = {"imsize": inference['image_size'], "transform": globals['transform']}
271
+ infer_opts = {"scales": inference['scales'], "features_num": inference['features_num']}
272
+ # Query vectors
273
+ qdset = ImagesFromList(root='', images=qimages, bbxs=bbxs, **data_opts)
274
+ qvecs, qimids, *_ = how_net.extract_vectors_local(net, qdset, globals["device"], **infer_opts)
275
+ qimids += imid_offset
276
+ metadata, query_ids, ranks, scores = asmk_dataset.query_ivf(qvecs, qimids)
277
+ logger.debug(f"Average query time (quant+aggr+search) is {metadata['query_avg_time']:.3f}s")
278
+ # Evaluate
279
+ if gnd is not None:
280
+ results[dataset] = score_helpers.compute_map_and_log(dataset, ranks.T, gnd, logger=logger)
281
+ with cache_path.open("wb") as handle:
282
+ pickle.dump({"metadata": metadata, "query_ids": query_ids, "ranks": ranks, "scores": scores}, handle)
283
+
284
+ #
285
+ # Helpers
286
+ #
287
+
288
+ def _convert_checkpoint(state):
289
+ """Enable loading checkpoints in the old format"""
290
+ if "_version" not in state:
291
+ # Old checkpoint format
292
+ meta = state['meta']
293
+ state['net_params'] = {
294
+ "architecture": meta['architecture'],
295
+ "pretrained": True,
296
+ "skip_layer": meta['skip_layer'],
297
+ "dim_reduction": {"dim": meta["dim"]},
298
+ "smoothing": {"kernel_size": meta["feat_pool_k"]},
299
+ "runtime": {
300
+ "mean_std": [meta['mean'], meta['std']],
301
+ "image_size": 1024,
302
+ "features_num": 1000,
303
+ "scales": [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25],
304
+ "training_scales": [1],
305
+ },
306
+ }
307
+
308
+ state_dict = state['state_dict']
309
+ state_dict['dim_reduction.weight'] = state_dict.pop("whiten.weight")
310
+ state_dict['dim_reduction.bias'] = state_dict.pop("whiten.bias")
311
+
312
+ state['_version'] = "how/2020"
313
+
314
+ return state
how/stages/train.py ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implements training new models"""
2
+
3
+ import time
4
+ import copy
5
+ from collections import defaultdict
6
+ import numpy as np
7
+ import torch
8
+ import torchvision.transforms as transforms
9
+
10
+ from cirtorch.layers.loss import ContrastiveLoss
11
+ from cirtorch.datasets.datahelpers import collate_tuples
12
+ from cirtorch.datasets.traindataset import TuplesDataset
13
+ from cirtorch.datasets.genericdataset import ImagesFromList
14
+
15
+ from ..networks import how_net
16
+ from ..utils import data_helpers, io_helpers, logging, plots
17
+ from . import evaluate
18
+
19
+
20
+ def train(demo_train, training, validation, model, globals):
21
+ """Demo training a network
22
+
23
+ :param dict demo_train: Demo-related options
24
+ :param dict training: Training options
25
+ :param dict validation: Validation options
26
+ :param dict model: Model options
27
+ :param dict globals: Global options
28
+ """
29
+ logger = globals["logger"]
30
+ (globals["exp_path"] / "epochs").mkdir(exist_ok=True)
31
+ if (globals["exp_path"] / f"epochs/model_epoch{training['epochs']}.pth").exists():
32
+ logger.info("Skipping network training, already trained")
33
+ return
34
+
35
+ # Global setup
36
+ set_seed(0)
37
+ globals["device"] = torch.device("cpu")
38
+ if demo_train['gpu_id'] is not None:
39
+ globals["device"] = torch.device(("cuda:%s" % demo_train['gpu_id']))
40
+
41
+ # Initialize network
42
+ net = how_net.init_network(**model).to(globals["device"])
43
+ globals["transform"] = transforms.Compose([transforms.ToTensor(), \
44
+ transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std'])))])
45
+ with logging.LoggingStopwatch("initializing network whitening", logger.info, logger.debug):
46
+ initialize_dim_reduction(net, globals, **training['initialize_dim_reduction'])
47
+
48
+ # Initialize training
49
+ optimizer, scheduler, criterion, train_loader = \
50
+ initialize_training(net.parameter_groups(training["optimizer"]), training, globals)
51
+ validation = Validation(validation, globals)
52
+
53
+ for epoch in range(training['epochs']):
54
+ epoch1 = epoch + 1
55
+ set_seed(epoch1)
56
+
57
+ time0 = time.time()
58
+ train_loss = train_epoch(train_loader, net, globals, criterion, optimizer, epoch1)
59
+
60
+ validation.add_train_loss(train_loss, epoch1)
61
+ validation.validate(net, epoch1)
62
+
63
+ scheduler.step()
64
+
65
+ io_helpers.save_checkpoint({
66
+ 'epoch': epoch1, 'meta': net.meta, 'state_dict': net.state_dict(),
67
+ 'optimizer' : optimizer.state_dict(), 'best_score': validation.best_score[1],
68
+ 'scores': validation.scores, 'net_params': model, '_version': 'how/2020',
69
+ }, validation.best_score[0] == epoch1, epoch1 == training['epochs'], globals["exp_path"] / "epochs")
70
+
71
+ logger.info(f"Epoch {epoch1} finished in {time.time() - time0:.1f}s")
72
+
73
+
74
+ def train_epoch(train_loader, net, globals, criterion, optimizer, epoch1):
75
+ """Train for one epoch"""
76
+ logger = globals['logger']
77
+ batch_time = data_helpers.AverageMeter()
78
+ data_time = data_helpers.AverageMeter()
79
+ losses = data_helpers.AverageMeter()
80
+
81
+ # Prepare epoch
82
+ train_loader.dataset.create_epoch_tuples(net)
83
+ net.train()
84
+
85
+ end = time.time()
86
+ for i, (input, target) in enumerate(train_loader):
87
+ data_time.update(time.time() - end)
88
+ optimizer.zero_grad()
89
+
90
+ num_images = len(input[0]) # number of images per tuple
91
+ for inp, trg in zip(input, target):
92
+ output = torch.zeros(net.meta['outputdim'], num_images).to(globals["device"])
93
+ for imi in range(num_images):
94
+ output[:, imi] = net(inp[imi].to(globals["device"])).squeeze()
95
+ loss = criterion(output, trg.to(globals["device"]))
96
+ loss.backward()
97
+ losses.update(loss.item())
98
+
99
+ optimizer.step()
100
+ batch_time.update(time.time() - end)
101
+ end = time.time()
102
+
103
+ if (i+1) % 20 == 0 or i == 0 or (i+1) == len(train_loader):
104
+ logger.info(f'>> Train: [{epoch1}][{i+1}/{len(train_loader)}]\t' \
105
+ f'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
106
+ f'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' \
107
+ f'Loss {losses.val:.4f} ({losses.avg:.4f})')
108
+
109
+ return losses.avg
110
+
111
+
112
+ def set_seed(seed):
113
+ """Sets given seed globally in used libraries"""
114
+ torch.manual_seed(seed)
115
+ if torch.cuda.is_available():
116
+ torch.cuda.manual_seed_all(seed)
117
+ np.random.seed(seed)
118
+
119
+
120
+ def initialize_training(net_parameters, training, globals):
121
+ """Initialize classes necessary for training"""
122
+ # Need to check for keys because of defaults
123
+ assert training['optimizer'].keys() == {"lr", "weight_decay"}
124
+ assert training['lr_scheduler'].keys() == {"gamma"}
125
+ assert training['loss'].keys() == {"margin"}
126
+ assert training['dataset'].keys() == {"name", "mode", "imsize", "nnum", "qsize", "poolsize"}
127
+ assert training['loader'].keys() == {"batch_size"}
128
+
129
+ optimizer = torch.optim.Adam(net_parameters, **training["optimizer"])
130
+ scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, **training["lr_scheduler"])
131
+ criterion = ContrastiveLoss(**training["loss"]).to(globals["device"])
132
+ train_dataset = TuplesDataset(**training['dataset'], transform=globals["transform"])
133
+ train_loader = torch.utils.data.DataLoader(train_dataset, **training['loader'], \
134
+ pin_memory=True, drop_last=True, shuffle=True, collate_fn=collate_tuples, \
135
+ num_workers=how_net.NUM_WORKERS)
136
+ return optimizer, scheduler, criterion, train_loader
137
+
138
+
139
+
140
+ def extract_train_descriptors(net, globals, *, images, features_num):
141
+ """Extract descriptors for a given number of images from the train set"""
142
+ if features_num is None:
143
+ features_num = net.runtime['features_num']
144
+
145
+ images = data_helpers.load_dataset('train', data_root=globals['root_path'])[0][:images]
146
+ dataset = ImagesFromList(root='', images=images, imsize=net.runtime['image_size'], bbxs=None,
147
+ transform=globals["transform"])
148
+ des_train = how_net.extract_vectors_local(net, dataset, globals["device"],
149
+ scales=net.runtime['training_scales'],
150
+ features_num=features_num)[0]
151
+ return des_train
152
+
153
+
154
+ def initialize_dim_reduction(net, globals, **kwargs):
155
+ """Initialize dimensionality reduction by PCA whitening from 'images' number of descriptors"""
156
+ if not net.dim_reduction:
157
+ return
158
+
159
+ print(">> Initializing dim reduction")
160
+ des_train = extract_train_descriptors(net.copy_excluding_dim_reduction(), globals, **kwargs)
161
+ net.dim_reduction.initialize_pca_whitening(des_train)
162
+
163
+
164
+ class Validation:
165
+ """A convenient interface to validation, keeping historical values and plotting continuously
166
+
167
+ :param dict validations: Options for each validation type (e.g. local_descriptor)
168
+ :param dict globals: Global options
169
+ """
170
+
171
+ methods = {
172
+ "global_descriptor": evaluate.eval_global,
173
+ "local_descriptor": evaluate.eval_asmk,
174
+ }
175
+
176
+ def __init__(self, validations, globals):
177
+ validations = copy.deepcopy(validations)
178
+ self.frequencies = {x: y.pop("frequency") for x, y in validations.items()}
179
+ self.validations = validations
180
+ self.globals = globals
181
+ self.scores = {x: defaultdict(list) for x in validations}
182
+ self.scores["train_loss"] = []
183
+
184
+ def add_train_loss(self, loss, epoch):
185
+ """Store training loss for given epoch"""
186
+ self.scores['train_loss'].append((epoch, loss))
187
+
188
+ fig = plots.EpochFigure("train set", ylabel="loss")
189
+ fig.plot(*list(zip(*self.scores["train_loss"])), 'o-', label='train')
190
+ fig.save(self.globals['exp_path'] / "fig_train.jpg")
191
+
192
+ def validate(self, net, epoch):
193
+ """Perform validation of the network and store the resulting score for given epoch"""
194
+ for name, frequency in self.frequencies.items():
195
+ if frequency and epoch % frequency == 0:
196
+ scores = self.methods[name](net, net.runtime, self.globals, **self.validations[name])
197
+ for dataset, values in scores.items():
198
+ value = values['map_medium'] if "map_medium" in values else values['map']
199
+ self.scores[name][dataset].append((epoch, value))
200
+
201
+ if "val_eccv20" in scores:
202
+ fig = plots.EpochFigure(f"val set - {name}", ylabel="mAP")
203
+ fig.plot(*list(zip(*self.scores[name]['val_eccv20'])), 'o-', label='val')
204
+ fig.save(self.globals['exp_path'] / f"fig_val_{name}.jpg")
205
+
206
+ if scores.keys() - {"val_eccv20"}:
207
+ fig = plots.EpochFigure(f"test set - {name}", ylabel="mAP")
208
+ for dataset, value in self.scores[name].items():
209
+ if dataset != "val_eccv20":
210
+ fig.plot(*list(zip(*value)), 'o-', label=dataset)
211
+ fig.save(self.globals['exp_path'] / f"fig_test_{name}.jpg")
212
+
213
+ @property
214
+ def decisive_scores(self):
215
+ """List of pairs (epoch, score) where score is decisive for comparing epochs"""
216
+ for name in ["local_descriptor", "global_descriptor"]:
217
+ if self.frequencies[name] and "val_eccv20" in self.scores[name]:
218
+ return self.scores[name]['val_eccv20']
219
+ return self.scores["train_loss"]
220
+
221
+ @property
222
+ def last_epoch(self):
223
+ """Tuple (last epoch, last score) or (None, None) before decisive score is computed"""
224
+ decisive_scores = self.decisive_scores
225
+ if not decisive_scores:
226
+ return None, None
227
+
228
+ return decisive_scores[-1]
229
+
230
+ @property
231
+ def best_score(self):
232
+ """Tuple (best epoch, best score) or (None, None) before decisive score is computed"""
233
+ decisive_scores = self.decisive_scores
234
+ if not decisive_scores:
235
+ return None, None
236
+
237
+ aggr = min
238
+ for name in ["local_descriptor", "global_descriptor"]:
239
+ if self.frequencies[name] and "val_eccv20" in self.scores[name]:
240
+ aggr = max
241
+ return aggr(decisive_scores, key=lambda x: x[1])
how/utils/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ """
2
+ Standalone utilities, mainly helper functions
3
+ """
how/utils/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (171 Bytes). View file
 
how/utils/__pycache__/data_helpers.cpython-37.pyc ADDED
Binary file (3.63 kB). View file
 
how/utils/__pycache__/download.cpython-37.pyc ADDED
Binary file (1.6 kB). View file
 
how/utils/__pycache__/html.cpython-37.pyc ADDED
Binary file (11.1 kB). View file
 
how/utils/__pycache__/io_helpers.cpython-37.pyc ADDED
Binary file (3.39 kB). View file
 
how/utils/__pycache__/score_helpers.cpython-37.pyc ADDED
Binary file (2.27 kB). View file
 
how/utils/__pycache__/visualize.cpython-37.pyc ADDED
Binary file (4.33 kB). View file
 
how/utils/__pycache__/whitening.cpython-37.pyc ADDED
Binary file (1.24 kB). View file
 
how/utils/data_helpers.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Data manipulation helpers"""
2
+
3
+ import os.path
4
+ import pickle
5
+
6
+ from cirtorch.datasets.datahelpers import cid2filename
7
+ from cirtorch.datasets.testdataset import configdataset
8
+
9
+
10
+ def load_dataset(dataset, data_root=''):
11
+ """Return tuple (image list, query list, bounding boxes, gnd dictionary)"""
12
+
13
+ if isinstance(dataset, dict):
14
+ root = os.path.join(data_root, dataset['image_root'])
15
+ images, qimages = None, None
16
+ if dataset['database_list'] is not None:
17
+ images = [path_join(root, x.strip("\n")) for x in open(dataset['database_list']).readlines()]
18
+ if dataset['query_list'] is not None:
19
+ qimages = [path_join(root, x.strip("\n")) for x in open(dataset['query_list']).readlines()]
20
+ bbxs = None
21
+ gnd = None
22
+
23
+ elif dataset == 'train':
24
+ training_set = 'retrieval-SfM-120k'
25
+ db_root = os.path.join(data_root, 'train', training_set)
26
+ ims_root = os.path.join(db_root, 'ims')
27
+ db_fn = os.path.join(db_root, '{}.pkl'.format(training_set))
28
+ with open(db_fn, 'rb') as f:
29
+ db = pickle.load(f)['train']
30
+ images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
31
+ qimages = []
32
+ bbxs = None
33
+ gnd = None
34
+
35
+ elif dataset == 'val_eccv20':
36
+ db_root = os.path.join(data_root, 'train', 'retrieval-SfM-120k')
37
+ fn_val_proper = db_root+'/retrieval-SfM-120k-val-eccv2020.pkl' # pos are all with #inl >=3 & <= 10
38
+ with open(fn_val_proper, 'rb') as f:
39
+ db = pickle.load(f)
40
+ ims_root = os.path.join(db_root, 'ims')
41
+ images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
42
+ gnd = db['gnd']
43
+ qidx = db['qidx']
44
+ qimages = [images[x] for x in qidx]
45
+ bbxs = None
46
+
47
+ elif "/" in dataset:
48
+ with open(dataset, 'rb') as handle:
49
+ db = pickle.load(handle)
50
+ images, qimages, bbxs, gnd = db['imlist'], db['qimlist'], None, db['gnd']
51
+
52
+ else:
53
+ cfg = configdataset(dataset, os.path.join(data_root, 'test'))
54
+ images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
55
+ qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
56
+ if 'bbx' in cfg['gnd'][0].keys():
57
+ bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
58
+ else:
59
+ bbxs = None
60
+ gnd = cfg['gnd']
61
+
62
+ return images, qimages, bbxs, gnd
63
+
64
+
65
+ def path_join(root, name):
66
+ """Perform os.path.join by default; if asterisk is present in root, substitute with the name.
67
+
68
+ >>> path_join('/data/img_*.jpg', '001')
69
+ '/data/img_001.jpg'
70
+ """
71
+ if "*" in root.rsplit("/", 1)[-1]:
72
+ return root.replace("*", name)
73
+ return os.path.join(root, name)
74
+
75
+
76
+ class AverageMeter:
77
+ """Compute and store the average and last value"""
78
+
79
+ def __init__(self):
80
+ self.val = 0
81
+ self.avg = 0
82
+ self.sum = 0
83
+ self.count = 0
84
+
85
+ def update(self, val, n=1):
86
+ """Update the counter by a new value"""
87
+ self.val = val
88
+ self.sum += val * n
89
+ self.count += n
90
+ self.avg = self.sum / self.count
how/utils/download.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for downloading files necessary for training and evaluation"""
2
+
3
+ import os.path
4
+ from cirtorch.utils.download import download_train, download_test
5
+ from . import io_helpers
6
+
7
+
8
+ def download_for_eval(evaluation, demo_eval, dataset_url, globals):
9
+ """Download datasets for evaluation and network if given by url"""
10
+ # Datasets
11
+ datasets = evaluation['global_descriptor']['datasets'] \
12
+ + evaluation['local_descriptor']['datasets']
13
+ download_datasets(datasets, dataset_url, globals)
14
+ # Network
15
+ if demo_eval and (demo_eval['net_path'].startswith("http://") \
16
+ or demo_eval['net_path'].startswith("https://")):
17
+ net_name = os.path.basename(demo_eval['net_path'])
18
+ io_helpers.download_files([net_name], globals['root_path'] / "models",
19
+ os.path.dirname(demo_eval['net_path']) + "/",
20
+ logfunc=globals["logger"].info)
21
+ demo_eval['net_path'] = globals['root_path'] / "models" / net_name
22
+
23
+
24
+ def download_for_train(validation, dataset_url, globals):
25
+ """Download datasets for training"""
26
+
27
+ datasets = ["train"] + validation['global_descriptor']['datasets'] \
28
+ + validation['local_descriptor']['datasets']
29
+ download_datasets(datasets, dataset_url, globals)
30
+
31
+
32
+ def download_datasets(datasets, dataset_url, globals):
33
+ """Download data associated with each required dataset"""
34
+
35
+ if "val_eccv20" in datasets:
36
+ download_train(globals['root_path'])
37
+ io_helpers.download_files(["retrieval-SfM-120k-val-eccv2020.pkl"],
38
+ globals['root_path'] / "train/retrieval-SfM-120k",
39
+ dataset_url, logfunc=globals["logger"].info)
40
+ elif "train" in datasets:
41
+ download_train(globals['root_path'])
42
+
43
+ if "roxford5k" in datasets or "rparis6k" in datasets:
44
+ download_test(globals['root_path'])
how/utils/html.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import print_function
2
+ import os
3
+ from PIL import Image
4
+
5
+ # see help for ocmmon HTML tags at http://www.mountaindragon.com/html/text.htm
6
+
7
+
8
+ class Node:
9
+ def __init__(self,tag,text='',props=dict()):
10
+ self.children = []
11
+ self.tag=tag
12
+ self.text=text
13
+ self.props=props
14
+ def add(self, node):
15
+ self.children.append(node)
16
+ return node
17
+ def tostr(self):
18
+ s = ""
19
+ if not self.props:
20
+ s+= "<%s>%s"%(self.tag,self.text)
21
+ else:
22
+ s+= "<%s %s>%s"%(self.tag,' '.join(["%s='%s'"%(k,v) for k,v in self.props.items() if v!=None]),self.text)
23
+ for child in self.children:
24
+ s += child.tostr()
25
+ s += "</%s>"%self.tag
26
+ return s
27
+ def write(self,fout):
28
+ if not self.props:
29
+ print("<%s>%s"%(self.tag,self.text), file=fout)
30
+ else:
31
+ print("<%s %s>%s"%(self.tag,' '.join(["%s='%s'"%(k,v) for k,v in self.props.items() if v!=None]),self.text), file=fout)
32
+ for child in self.children:
33
+ child.write(fout)
34
+ print("</%s>"%self.tag, file=fout)
35
+ def first(self,tag,order=1):
36
+ if self.tag==tag: return self
37
+ for c in self.children[::order]:
38
+ res = c.first(tag,order)
39
+ if res: return res
40
+ return None
41
+ def last(self,tag):
42
+ return self.first(tag,-1)
43
+
44
+
45
+
46
+ class HTML (Node):
47
+ def __init__(self):
48
+ Node.__init__(self,'html')
49
+ def header(self,**kw):
50
+ return self.add(Header(**kw))
51
+ def body(self,**kw):
52
+ return self.add(BodyNode('body',props=kw))
53
+ def save(self,fname):
54
+ fout = open(fname,'w') if type(fname)==str else fname
55
+ for e in self.children:
56
+ e.write(fout)
57
+ def show(self,fname=''):
58
+ if not fname: fname = os.tmpname()+'.html'
59
+ self.save(fname)
60
+ os.system('/opt/google/chrome/google-chrome '+fname)
61
+
62
+
63
+
64
+ class Header (HTML):
65
+ def __init__(self, **kw):
66
+ Node.__init__(self,'header',props=kw)
67
+ def title(self,text):
68
+ return self.add(Node('title',text=text))
69
+ def script(self, text="", **kw):
70
+ return self.add(Node('script',text=text, props=kw))
71
+ def link(self, **kw):
72
+ return self.add(Node('link', props=kw))
73
+ def meta(self):
74
+ return self.add(Node('meta', props={"http-equiv":"Content-Type", "content": "charset=iso-8859-1"}))
75
+
76
+ class BodyNode (Node):
77
+ # title of section
78
+ def h(self, strength, text='', **kw):
79
+ return self.add(BodyNode('h%d'%strength, text=text, props=kw))
80
+ # paragraph
81
+ def p(self, text='', **kw):
82
+ return self.add(BodyNode('p',text=text, props=kw))
83
+ # bold
84
+ def bold(self, text='', **kw):
85
+ return self.add(BodyNode('b',text=text, props=kw))
86
+ def b(self, text='', **kw):
87
+ return self.add(BodyNode('b',text=text, props=kw))
88
+ # italic
89
+ def italic(self, text='', **kw):
90
+ return self.add(BodyNode('i',text=text, props=kw))
91
+ def i(self, text='', **kw):
92
+ return self.add(BodyNode('i',text=text, props=kw))
93
+ # span/text
94
+ def span(self, text='', **kw):
95
+ return self.add(BodyNode('span',text=text, props=kw))
96
+ # font
97
+ def font(self,text='',color=None,face=None,size=None):
98
+ return self.add(BodyNode('font',text=text, props={'color':color,'face':face,'size':size}))
99
+ # small
100
+ def small(self, text='', **kw):
101
+ return self.add(BodyNode('small',text=text, props=kw))
102
+ def big(self, text='', **kw):
103
+ return self.add(BodyNode('big',text=text, props=kw))
104
+ # centered
105
+ def center(self, text='', **kw):
106
+ return self.add(BodyNode('center',text=text, props=kw))
107
+ # div
108
+ def div(self, text='', **kw):
109
+ return self.add(BodyNode('div', text=text, props=kw))
110
+ # unordered list
111
+ def unordlist(self, text='', **kw):
112
+ return self.add(BodyNode('ul', text=text, props=kw))
113
+ # ordered list
114
+ def ordlist(self, text='', **kw):
115
+ return self.add(BodyNode('ol', text=text, props=kw))
116
+ def item(self, text='', type=None, **kw):
117
+ kw['type'] = type # non-ord {'circle', 'square', 'disc'}, ord {'1', 'A', 'a', 'I', 'i'}
118
+ return self.add(BodyNode('li', text=text, props=kw))
119
+ # line break
120
+ def br(self):
121
+ self.add(Node('br'))
122
+ # horizontal line
123
+ def hr(self):
124
+ self.add(Node('hr'))
125
+ # table
126
+ def table(self, **kw):
127
+ return self.add(Table(**kw))
128
+ # image
129
+ def image(self, img, **kw):
130
+ return self.add(Image(img,**kw))
131
+ # link
132
+ def a(self, href, text='', **kw):
133
+ kw['href'] = href
134
+ return self.add(BodyNode('a', text=text, props=kw))
135
+ def hidden(self, text, **kw):
136
+ kw['type'] = 'hidden'
137
+ kw['value'] = text
138
+ return self.add(BodyNode('input',props=kw))
139
+ def imagelink(self, img, **kw):
140
+ return self.add( BodyNode('a', text=Image(img,**kw).tostr(), props={"href":img}) )
141
+
142
+ class Table (Node):
143
+ def __init__(self,**kw):
144
+ Node.__init__(self,'table',props=kw)
145
+ def row(self,elems=[],header=False,**kw):
146
+ r=TableRow(header, **kw)
147
+ for e in elems:
148
+ if issubclass(e.__class__,Node):
149
+ r.add(e)
150
+ else:
151
+ r.cell(str(e))
152
+ return self.add(r)
153
+ def fromlist(self, elems, header=None):
154
+ if header and type(header)!=bool: elems=[header]+elems; header=True
155
+ for row in elems:
156
+ self.row(row,header=header)
157
+ header=False # only once
158
+
159
+
160
+ class TableRow (Node):
161
+ def __init__(self, isheader=False, **kw):
162
+ Node.__init__(self,'tr',props=kw)
163
+ self.isheader=isheader
164
+ def cell(self, text='', **kw):
165
+ return self.add(BodyNode(self.isheader and 'th' or 'td',text=text,props=kw))
166
+
167
+
168
+
169
+ class Image (Node):
170
+ def __init__(self, img, dir='', name='', width=None, height=None, alt=None):
171
+ if type(img)==str: loc = img
172
+ else:
173
+ if name:
174
+ img.save(os.path.join(dir,name))
175
+ loc = name
176
+ else:
177
+ loc = os.tmpnam()+".png"
178
+ img.save(loc)
179
+ Node.__init__(self,'img',props={'src':loc,'width':width,'height':height,'alt':alt,'title':alt})
180
+
181
+
182
+ def htmlspace(n):
183
+ return "&nbsp;".join(["" for i in range(n)])
184
+ def htmloptions(l):
185
+ return "".join(["<option>"+s+"</option>" for s in l])
186
+
187
+
188
+ if __name__=='__main__':
189
+ import pdb
190
+
191
+ doc = HTML()
192
+ doc.header().title('test of python-generated HTML page')
193
+ body=doc.body()
194
+ body.h(1,"1. Title of page")
195
+ body.p('a paragraph of text')
196
+ body.h(2,"2.1 second title")
197
+ p=body.p()
198
+ p.italic('another')
199
+ p.font(color='red').bold('paragraph')
200
+ p.span('of text')
201
+ body.h(3,'2.1.1. sub-sub-title')
202
+ body.p("Here is a list:")
203
+ ls=body.unordlist()
204
+ ls.item("first item")
205
+ ls.item("second item")
206
+ ls.item("final item")
207
+ body.hr()
208
+ body.table(border=1).fromlist([[1,2],[3,4]],header=['col1','col2'])
209
+ body.br()
210
+ body.center().image(img='/home/lear/revaud/coca-cola.jpg',width=500,height=300)
211
+ body.hr()
212
+ tab=body.table(border=0)
213
+ tab.row(['coca-cola']*5,header=True)
214
+ for i in range(3):
215
+ r = body.last('table').row()
216
+ for j in range(5):
217
+ r.cell(bgcolor=['#00FF00','red'][(i+j)%2]).image('/home/lear/revaud/coca-cola2.jpg',width=200)
218
+
219
+ doc.show('/tmp/test.html')
220
+ print('result stored in /tmp/test.html')
221
+
222
+
223
+
224
+
225
+
226
+
227
+
228
+
229
+
230
+
231
+
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
240
+
241
+
242
+
243
+
244
+
245
+
246
+
247
+
248
+
249
+
250
+
251
+
252
+
how/utils/io_helpers.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Helper functions related to io"""
2
+
3
+ import os.path
4
+ import sys
5
+ import shutil
6
+ import urllib.request
7
+ from pathlib import Path
8
+ import yaml
9
+ import torch
10
+
11
+
12
+ def progress(iterable, *, size=None, print_freq=1, handle=sys.stdout):
13
+ """Generator wrapping an iterable to print progress"""
14
+ for i, element in enumerate(iterable):
15
+ yield element
16
+
17
+ if i == 0 or (i+1) % print_freq == 0 or (i+1) == size:
18
+ if size:
19
+ handle.write(f'\r>>>> {i+1}/{size} done...')
20
+ else:
21
+ handle.write(f'\r>>>> {i+1} done...')
22
+
23
+ handle.write("\n")
24
+
25
+
26
+ # Params
27
+
28
+ def load_params(path):
29
+ """Return loaded parameters from a yaml file"""
30
+ with open(path, "r") as handle:
31
+ content = yaml.safe_load(handle)
32
+ return load_nested_templates(content, os.path.dirname(path))
33
+
34
+ def save_params(path, params):
35
+ """Save given parameters to a yaml file"""
36
+ with open(path, "w") as handle:
37
+ yaml.safe_dump(params, handle, default_flow_style=False)
38
+
39
+ def load_nested_templates(params, root_path):
40
+ """Find keys '__template__' in nested dictionary and replace corresponding value with loaded
41
+ yaml file"""
42
+ if not isinstance(params, dict):
43
+ return params
44
+
45
+ if "__template__" in params:
46
+ template_path = os.path.expanduser(params.pop("__template__"))
47
+ path = os.path.join(root_path, template_path)
48
+ root_path = os.path.dirname(path)
49
+ # Treat template as defaults
50
+ params = dict_deep_overlay(load_params(path), params)
51
+
52
+ for key, value in params.items():
53
+ params[key] = load_nested_templates(value, root_path)
54
+
55
+ return params
56
+
57
+ def dict_deep_overlay(defaults, params):
58
+ """If defaults and params are both dictionaries, perform deep overlay (use params value for
59
+ keys defined in params), otherwise use defaults value"""
60
+ if isinstance(defaults, dict) and isinstance(params, dict):
61
+ for key in params:
62
+ defaults[key] = dict_deep_overlay(defaults.get(key, None), params[key])
63
+ return defaults
64
+
65
+ return params
66
+
67
+ def dict_deep_set(dct, key, value):
68
+ """Set key to value for a nested dictionary where the key is a sequence (e.g. list)"""
69
+ if len(key) == 1:
70
+ dct[key[0]] = value
71
+ return
72
+
73
+ if not isinstance(dct[key[0]], dict) or key[0] not in dct:
74
+ dct[key[0]] = {}
75
+ dict_deep_set(dct[key[0]], key[1:], value)
76
+
77
+
78
+ # Download
79
+
80
+ def download_files(names, root_path, base_url, logfunc=None):
81
+ """Download file names from given url to given directory path. If logfunc given, use it to log
82
+ status."""
83
+ root_path = Path(root_path)
84
+ for name in names:
85
+ path = root_path / name
86
+ if path.exists():
87
+ continue
88
+ if logfunc:
89
+ logfunc(f"Downloading file '{name}'")
90
+ path.parent.mkdir(parents=True, exist_ok=True)
91
+ urllib.request.urlretrieve(base_url + name, path)
92
+
93
+
94
+ # Checkpoints
95
+
96
+ def save_checkpoint(state, is_best, keep_epoch, directory):
97
+ """Save state dictionary to the directory providing whether the corresponding epoch is the best
98
+ and whether to keep it anyway"""
99
+ filename = os.path.join(directory, 'model_epoch%d.pth' % state['epoch'])
100
+ filename_best = os.path.join(directory, 'model_best.pth')
101
+ if is_best and keep_epoch:
102
+ torch.save(state, filename)
103
+ shutil.copyfile(filename, filename_best)
104
+ elif is_best or keep_epoch:
105
+ torch.save(state, filename_best if is_best else filename)
how/utils/logging.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Logging-related functionality"""
2
+
3
+ import time
4
+ import logging
5
+
6
+ # Logging
7
+
8
+ def init_logger(log_path):
9
+ """Return a logger instance which logs to stdout and, if log_path is not None, also to a file"""
10
+ logger = logging.getLogger("HOW")
11
+ logger.setLevel(logging.DEBUG)
12
+
13
+ stdout_handler = logging.StreamHandler()
14
+ stdout_handler.setLevel(logging.INFO)
15
+ stdout_handler.setFormatter(logging.Formatter('%(name)s %(levelname)s: %(message)s'))
16
+ logger.addHandler(stdout_handler)
17
+
18
+ if log_path:
19
+ file_handler = logging.FileHandler(log_path)
20
+ file_handler.setLevel(logging.DEBUG)
21
+ formatter = logging.Formatter('%(asctime)s %(name)s %(levelname)s: %(message)s')
22
+ file_handler.setFormatter(formatter)
23
+ logger.addHandler(file_handler)
24
+
25
+ return logger
26
+
27
+
28
+ # Stopwatch
29
+
30
+ class LoggingStopwatch:
31
+ """Stopwatch context that produces one message when entered and another one when exited,
32
+ with the time spent in the context embedded in the exiting message.
33
+
34
+ :param str message: Message to be logged at the start and finish. If the first word
35
+ of the message ends with 'ing', convert to passive for finish message.
36
+ :param callable log_start: Will be called with given message at the start
37
+ :param callable log_finish: Will be called with built message at the finish. If None, use
38
+ log_start
39
+ """
40
+
41
+ def __init__(self, message, log_start, log_finish=None):
42
+ self.message = message
43
+ self.log_start = log_start
44
+ self.log_finish = log_finish if log_finish is not None else log_start
45
+ self.time0 = None
46
+
47
+ def __enter__(self):
48
+ self.time0 = time.time()
49
+ if self.log_start:
50
+ self.log_start(self.message.capitalize())
51
+
52
+ def __exit__(self, exc_type, exc_val, exc_tb):
53
+ # Build message
54
+ words = self.message.split(" ")
55
+ secs = "%.1fs" % (time.time() - self.time0)
56
+ if words[0].endswith("ing"):
57
+ words += [words.pop(0).replace("ing", "ed"), "in", secs]
58
+ else:
59
+ words += ["(%.1f)" % secs]
60
+
61
+ # Log message
62
+ if self.log_finish:
63
+ self.log_finish(" ".join(words).capitalize())
how/utils/plots.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Plotting classes"""
2
+
3
+ import matplotlib
4
+ matplotlib.use('Agg')
5
+ import matplotlib.pyplot as plt
6
+
7
+
8
+ class EpochFigure:
9
+ """Basic figure for plotting scores across epochs
10
+
11
+ :param str title: Figure title
12
+ :param str ylabel: Plot's y label
13
+ """
14
+
15
+ def __init__(self, title, *, ylabel):
16
+ self.fig = plt.figure()
17
+ self.axes = self.fig.add_subplot(1, 1, 1)
18
+ self.title = title
19
+ self.ylabel = ylabel
20
+
21
+ def __del__(self):
22
+ plt.close(self.fig)
23
+
24
+ def __getattr__(self, name):
25
+ # Delegate method calls on self.axes
26
+ return getattr(self.axes, name)
27
+
28
+ def save(self, path):
29
+ """Save figure to given path"""
30
+ self.axes.grid(b=True, which='major', color='k', linestyle='-')
31
+ self.axes.grid(b=True, which='minor', color='r', linestyle='-', alpha=0.2)
32
+ self.axes.minorticks_on()
33
+ self.axes.legend()
34
+ self.axes.set_xlabel('epoch')
35
+ self.axes.set_ylabel(self.ylabel)
36
+ self.axes.set_title(self.title)
37
+ self.fig.savefig(path)
how/utils/score_helpers.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Helper functions for computing evaluation scores"""
2
+
3
+ import numpy as np
4
+
5
+ from cirtorch.utils.evaluate import compute_map
6
+
7
+
8
+ def compute_map_and_log(dataset, ranks, gnd, kappas=(1, 5, 10), logger=None):
9
+ """Computed mAP and log it
10
+
11
+ :param str dataset: Dataset to compute the mAP on (e.g. roxford5k)
12
+ :param np.ndarray ranks: 2D matrix of ints corresponding to previously computed ranks
13
+ :param dict gnd: Ground-truth dataset structure
14
+ :param list kappas: Compute mean precision at each kappa
15
+ :param logging.Logger logger: If not None, use it to log mAP and all mP@kappa
16
+ :return tuple: mAP and mP@kappa (medium difficulty for roxford5k and rparis6k)
17
+ """
18
+ # new evaluation protocol
19
+ if dataset.startswith('roxford5k') or dataset.startswith('rparis6k'):
20
+ gnd_t = []
21
+ for gndi in gnd:
22
+ g = {}
23
+ g['ok'] = np.concatenate([gndi['easy']])
24
+ g['junk'] = np.concatenate([gndi['junk'], gndi['hard']])
25
+ gnd_t.append(g)
26
+ mapE, apsE, mprE, prsE = compute_map(ranks, gnd_t, kappas)
27
+
28
+ gnd_t = []
29
+ for gndi in gnd:
30
+ g = {}
31
+ g['ok'] = np.concatenate([gndi['easy'], gndi['hard']])
32
+ g['junk'] = np.concatenate([gndi['junk']])
33
+ gnd_t.append(g)
34
+ mapM, apsM, mprM, prsM = compute_map(ranks, gnd_t, kappas)
35
+
36
+ gnd_t = []
37
+ for gndi in gnd:
38
+ g = {}
39
+ g['ok'] = np.concatenate([gndi['hard']])
40
+ g['junk'] = np.concatenate([gndi['junk'], gndi['easy']])
41
+ gnd_t.append(g)
42
+ mapH, apsH, mprH, prsH = compute_map(ranks, gnd_t, kappas)
43
+
44
+ if logger:
45
+ fmap = lambda x: np.around(x*100, decimals=2)
46
+ logger.info(f"Evaluated {dataset}: mAP E: {fmap(mapE)}, M: {fmap(mapM)}, H: {fmap(mapH)}")
47
+ logger.info(f"Evaluated {dataset}: mP@k{kappas} E: {fmap(mprE)}, M: {fmap(mprM)}, H: {fmap(mprH)}")
48
+
49
+ scores = {"map_easy": mapE.item(), "mp@k_easy": mprE, "ap_easy": apsE, "p@k_easy": prsE,
50
+ "map_medium": mapM.item(), "mp@k_medium": mprM, "ap_medium": apsM, "p@k_medium": prsM,
51
+ "map_hard": mapH.item(), "mp@k_hard": mprH, "ap_hard": apsH, "p@k_hard": prsH}
52
+ return scores
53
+
54
+ # old evaluation protocol
55
+ map_score, ap_scores, prk, pr_scores = compute_map(ranks, gnd, kappas=kappas)
56
+ if logger:
57
+ fmap = lambda x: np.around(x*100, decimals=2)
58
+ logger.info(f"Evaluated {dataset}: mAP {fmap(map_score)}, mP@k {fmap(prk)}")
59
+ return {"map": map_score, "mp@k": prk, "ap": ap_scores, "p@k": pr_scores}
how/utils/visualize.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import cv2
4
+
5
+
6
+ from how.utils.html import HTML
7
+
8
+ def visualize_attention_map(dataset_name, imgpaths, attentions, scales, outdir):
9
+ assert len(imgpaths) == len(attentions)
10
+ os.makedirs(outdir, exist_ok=True)
11
+ for i, imgpath in enumerate(imgpaths): # for each image
12
+ img_basename = os.path.splitext(os.path.basename(imgpath))[0]
13
+ atts = attentions[i]
14
+ # load image
15
+ img = cv2.imread(imgpath)
16
+ # generate the visu for each scale independently
17
+ for j,s in enumerate(scales):
18
+ a = atts[j]
19
+ img_s = cv2.resize(img, None, fx=s, fy=s)
20
+ heatmap_s = cv2.applyColorMap( (255*cv2.resize(a, (img_s.shape[1],img_s.shape[0]))).astype(np.uint8), cv2.COLORMAP_JET)
21
+ overlay = cv2.addWeighted(heatmap_s, 0.5, img_s, 0.5, 0)
22
+ cv2.imwrite(outdir+'{:s}_scale{:g}.jpg'.format(img_basename, s), overlay)
23
+ # generate the visu for the aggregation over scales
24
+ agg_atts = sum([cv2.resize(a, (img.shape[1],img.shape[0])) for a in atts]) / len(atts)
25
+ heatmap_s = cv2.applyColorMap( (255*agg_atts).astype(np.uint8), cv2.COLORMAP_JET)
26
+ overlay = cv2.addWeighted(heatmap_s, 0.5, img, 0.5, 0)
27
+ cv2.imwrite(outdir+'{:s}_aggregated.jpg'.format(img_basename), overlay)
28
+ # generate a html webpage for visualization
29
+ doc = HTML()
30
+ doc.header().title(dataset_name)
31
+ b = doc.body()
32
+ b.h(1, dataset_name+' (attention map)')
33
+ t = b.table(cellpadding=2, border=1)
34
+ for i, imgpath in enumerate(imgpaths):
35
+ img_basename = os.path.splitext(os.path.basename(imgpath))[0]
36
+ if i%3==0: t.row(['info','image','agg','scale 1']+['scale '+str(s) for s in scales if s!=1], header=True)
37
+ r = t.row()
38
+ r.cell(str(i)+': '+img_basename)
39
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a>'.format(img=imgpath))
40
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a>'.format(img='{:s}_aggregated.jpg'.format(img_basename)))
41
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a>'.format(img='{:s}_scale1.jpg'.format(img_basename)))
42
+ for s in scales:
43
+ if s==1: continue
44
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a>'.format(img='{:s}_scale{:g}.jpg'.format(img_basename,s)))
45
+ doc.save(outdir+'index.html')
46
+
47
+
48
+ def visualize_region_maps(dataset_name, imgpaths, attentions, regions, scales, outdir, topk=10):
49
+ assert len(imgpaths) == len(attentions)
50
+ assert len(attentions) == len(regions)
51
+ assert 1 in scales # we display the regions only for scale 1 (at least so far)
52
+ os.makedirs(outdir, exist_ok=True)
53
+ # generate visualization of each region
54
+ for i, imgpath in enumerate(imgpaths): # for each image
55
+ img_basename = os.path.splitext(os.path.basename(imgpath))[0]
56
+ regs = regions[i]
57
+ # load image
58
+ img = cv2.imread(imgpath)
59
+ # for each scale
60
+ for j,s in enumerate(scales):
61
+ if s!=1: continue # just consider scale 1
62
+ r = regs[j][-1]
63
+ img_s = cv2.resize(img, None, fx=s, fy=s)
64
+ for ir in range(r.shape[0]):
65
+ heatmap_s = cv2.applyColorMap( (255*cv2.resize(np.minimum(1,100*r[ir,:,:]), (img_s.shape[1],img_s.shape[0]))).astype(np.uint8), cv2.COLORMAP_JET) # factor 10 for easier visualization
66
+ overlay = cv2.addWeighted(heatmap_s, 0.5, img_s, 0.5, 0)
67
+ cv2.imwrite(outdir+'{:s}_region{:d}_scale{:g}.jpg'.format(img_basename, ir, s), overlay)
68
+ # generate a html webpage for visualization
69
+ doc = HTML()
70
+ doc.header().title(dataset_name)
71
+ b = doc.body()
72
+ b.h(1, dataset_name+' (region maps)')
73
+ t = b.table(cellpadding=2, border=1)
74
+ for i, imgpath in enumerate(imgpaths):
75
+ atts = attentions[i]
76
+ regs = regions[i]
77
+ for j,s in enumerate(scales):
78
+ a = atts[j]
79
+ rr = regs[j][-1] # -1 because it is a list of the history of regions
80
+ if s==1: break
81
+ argsort = np.argsort(-a)
82
+ img_basename = os.path.splitext(os.path.basename(imgpath))[0]
83
+ if i%3==0: t.row(['info','image']+['scale 1 - region {:d}'.format(ir) for ir in range(topk)], header=True)
84
+ r = t.row()
85
+ r.cell(str(i)+': '+img_basename)
86
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a>'.format(img=imgpath))
87
+ for ir in range(topk):
88
+ index = argsort[ir]
89
+ r.cell('<a href="{img:s}"><img src="{img:s}"/></a><br>index: {index:d}, att: {att:g}, rmax: {rmax:g}'.format(img='{:s}_region{:d}_scale{:g}.jpg'.format(img_basename,index,s), index=index, att=a[index], rmax=rr[index,:,:].max()))
90
+ doc.save(outdir+'index.html')
91
+
92
+ if __name__=='__main__':
93
+ dataset = 'roxford5k'
94
+ from how.utils import data_helpers
95
+ images, qimages, bbxs, gnd = data_helpers.load_dataset(dataset, data_root="/tmp-network/user/pweinzae/CNNImageRetrieval/data/")
96
+ import pickle
97
+ with open('/tmp-network/user/pweinzae/roxford5k_features_attentions.pkl', 'rb') as fid:
98
+ features, attentions = pickle.load(fid)
99
+ visualize_attention_maps(qimages, attentions, scales=[2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25], outdir='/tmp-network/user/pweinzae/tmp/visu_attention_maps/'+dataset)
how/utils/whitening.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Functions for training and applying whitening"""
2
+
3
+ import numpy as np
4
+
5
+
6
+ def l2_normalize_vec(X):
7
+ """L2-normalize given descriptors"""
8
+ return X / (np.linalg.norm(X, ord=2, axis=1, keepdims=True) + 1e-6)
9
+
10
+
11
+ def whitenapply(X, m, P, dimensions=None):
12
+ """Apply whitening (m, P) on descriptors X. If dimensions not None, perform dim reduction."""
13
+ if not dimensions:
14
+ dimensions = P.shape[1]
15
+
16
+ X = np.dot(X-m, P[:, :dimensions])
17
+ return l2_normalize_vec(X)
18
+
19
+
20
+ def pcawhitenlearn_shrinkage(X, s=1.0):
21
+ """Learn PCA whitening with shrinkage from given descriptors"""
22
+ N = X.shape[0]
23
+
24
+ # Learning PCA w/o annotations
25
+ m = X.mean(axis=0, keepdims=True)
26
+ Xc = X - m
27
+ Xcov = np.dot(Xc.T, Xc)
28
+ Xcov = (Xcov + Xcov.T) / (2*N)
29
+ eigval, eigvec = np.linalg.eig(Xcov)
30
+ order = eigval.argsort()[::-1]
31
+ eigval = eigval[order]
32
+ eigvec = eigvec[:, order]
33
+
34
+ P = np.dot(np.linalg.inv(np.diag(np.power(eigval, 0.5*s))), eigvec.T)
35
+
36
+ return m, P.T
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ numpy
2
+ pyaml
3
+ matplotlib
4
+ torch==1.3.1
5
+ torchvision==0.4.2