Spaces:
Runtime error
Runtime error
File size: 14,911 Bytes
cacafc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
'''
LinCIR
Copyright (c) 2023-present NAVER Corp.
CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
'''
import json
import os
import pickle
import random
import math
from argparse import ArgumentParser
from pathlib import Path
from typing import Literal, Tuple, Dict, List, Set
import logging
import numpy as np
import torch
import torch.nn.functional as F
from tqdm import tqdm
from loader import build_loader, CIRRDataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, EMAModel
from utils import extract_image_features, extract_pseudo_tokens_with_phi
from validate import cirr_compute_val_metrics
import transformers
from transformers import get_scheduler
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from accelerate.state import AcceleratorState
from accelerate.logging import get_logger
logger = get_logger(__name__)
def parse_args():
parser = ArgumentParser()
parser.add_argument("--output_dir", default="trained_models", type=str,
help="The output directory where the model predictions and checkpoints will be written")
parser.add_argument("--logging_dir", default="logs", type=str, help="tensorboard logs will saved here")
parser.add_argument("--cache_dir", default="./hf_models", type=str,
help="Path to model cache folder")
parser.add_argument("--report_to", default="tensorboard", type=str, help="")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--clip_model_name", default="giga", type=str,
help="CLIP model to use, e.g 'large', 'giga'")
parser.add_argument("--cirr_dataset_path", type=str, help="Path to CIRR dataset", required=True)
parser.add_argument("--keywords_path", type=str, help="Path to keywords json file")
parser.add_argument("--resume", default=None, type=str, help="Path to pretrained ckpt")
parser.add_argument("--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes.")
parser.add_argument("--lr_scheduler", type=str, default="constant",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
help="")
parser.add_argument("--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--max_train_steps", type=int, default=50000, help="Total number of training steps to perform")
parser.add_argument("--phi_dropout", default=0.5, type=float, help="Dropout probability for the phi network")
parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")
parser.add_argument("--batch_size", default=256, type=int, help="Phi training batch size")
parser.add_argument("--num_workers", default=10, type=int, help="Number of workers")
parser.add_argument("--learning_rate", default=1e-4, type=float, help="Learning rate")
parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int, help="Number of updates steps to accumulate before performing a backward/update pass")
parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.")
parser.add_argument("--mixed_precision", default=None, type=str, choices=["no", "fp16", "bf16"], help="mixed precision")
parser.add_argument("--validation_steps", default=1, type=int, help="Validation frequency expressed in epochs")
parser.add_argument("--checkpointing_steps", default=None, type=int, help="Save a checkpoint of the training state every X updates")
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--seed", type=int, default=None, help="seed for reproducibility")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def save_phi(name: str, cur_epoch: int, model_to_save: Phi, training_path: Path) -> None:
"""
Save the weights of Phi during training
"""
models_path = os.path.join(training_path, "checkpoints")
os.makedirs(models_path, exist_ok=True)
model_name = model_to_save.__class__.__name__
torch.save({
'epoch': cur_epoch,
model_name: model_to_save.state_dict(),
}, os.path.join(models_path, f'{name}.pt'))
def train_phi(args):
# We are going to use the pre-extracted clip image features. so we do not need image_encoder anymore.
### init accelerator here
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_dir=logging_dir,
)
os.makedirs(args.output_dir, exist_ok=True)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
if args.seed is not None:
set_seed(args.seed)
### Define the text encoder from clip
image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)
### Define the phi model
phi = Phi(input_dim=text_encoder.config.projection_dim,
hidden_dim=text_encoder.config.projection_dim * 4,
output_dim=text_encoder.config.hidden_size, dropout=args.phi_dropout)
if args.resume:
phi.load_state_dict(
torch.load(args.resume, map_location=accelerator.device)[
phi.__class__.__name__])
### GPU handling
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
image_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
image_encoder.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.use_ema:
import copy
ema_phi = copy.deepcopy(phi)
ema_phi = EMAModel(ema_phi.parameters())
ema_phi.to(accelerator.device, dtype=weight_dtype)
### Define the train datasets
print('pytorch loader')
train_dataset = build_loader(args, tokenizer, accelerator)
## evaluator
if accelerator.is_main_process:
## Define CIRR validation set
cirr_relative_val_dataset = CIRRDataset(args.cirr_dataset_path, 'val', 'relative', clip_preprocess)
cirr_classic_val_dataset = CIRRDataset(args.cirr_dataset_path, 'val', 'classic', clip_preprocess)
# Extract the features for the CIRR validation set
cirr_val_index_features, cirr_val_index_names = extract_image_features(cirr_classic_val_dataset, image_encoder)
# Define the optimizer, the loss and the grad scaler
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(phi.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps * accelerator.num_processes,
)
phi, optimizer, lr_scheduler, train_dataset = accelerator.prepare(
phi, optimizer, lr_scheduler, train_dataset
)
if accelerator.is_main_process:
accelerator.init_trackers("zeroshot-cir", config=vars(args))
# Start with the training loop
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total steps = {args.max_train_steps}")
phi.train()
train_loss = 0.0
global_step = 0
best_recall = -1
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
while True:
for idx, (original_tokens, replaced_tokens, indicators) in enumerate(train_dataset):
original_tokens = original_tokens.to(accelerator.device)
replaced_tokens = replaced_tokens.to(accelerator.device)
org = text_encoder(input_ids=original_tokens)
original_text_embeddings, original_last_hidden_states = org.text_embeds, org.last_hidden_state
input_features = original_text_embeddings.clone()
input_features += 1.0 * torch.rand(input_features.shape[0], device=input_features.device).unsqueeze(-1) * torch.randn(input_features.shape, device=input_features.device)
# normalize test
if args.l2_normalize:
input_features = F.normalize(input_features, dim=-1)
#################
estimated_token_embeddings = phi(input_features)
replaced_text_embeddings, replaced_last_hidden_states = encode_with_pseudo_tokens_HF(text_encoder, replaced_tokens, estimated_token_embeddings, return_last_states=True)
loss = F.mse_loss(replaced_text_embeddings.float(), original_text_embeddings.float(), reduction="mean")
avg_loss = accelerator.gather(loss.repeat(args.batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagation
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm is not None:
accelerator.clip_grad_norm_(phi.parameters(), arg.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
if args.use_ema:
ema_phi.step(phi.module.parameters())
progress_bar.update(1)
global_step += 1
accelerator.log({"train/train_loss": train_loss}, step=global_step)
train_loss = 0.0
accelerator.log({'train/lr': lr_scheduler.get_last_lr()[0]}, step=global_step)
accelerator.log({'train/preproc_rate': torch.sum(indicators).item() / len(indicators)}, step=global_step)
if args.checkpointing_steps and global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
logger.info(f"model saving... step: {global_step}")
save_phi(f"phi_{global_step:09}", global_step, accelerator.unwrap_model(phi), args.output_dir)
save_phi(f"phi_latest", global_step, accelerator.unwrap_model(phi), args.output_dir)
if args.use_ema:
phi_for_saving = copy.deepcopy(accelerator.unwrap_model(phi))
ema_phi.copy_to(phi_for_saving.parameters())
save_phi(f"ema_phi_{global_step:09}", global_step, phi_for_saving, args.output_dir)
save_phi(f"ema_phi_latest", global_step, phi_for_saving, args.output_dir)
if global_step % args.validation_steps == 0 or global_step == 50:
if accelerator.is_main_process:
logger.info(f"evaluate model... step: {global_step}")
if args.use_ema:
phi_for_eval = copy.deepcopy(accelerator.unwrap_model(phi))
ema_phi.copy_to(phi_for_eval.parameters())
else:
phi_for_eval = phi
phi_for_eval.eval()
# Extract the pseudo tokens for the CIRR validation set using Phi
cirr_val_pseudo_tokens, cirr_val_ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi_for_eval,
cirr_relative_val_dataset, args)
cirr_val_pseudo_tokens = cirr_val_pseudo_tokens.to(accelerator.device)
# Compute the CIRR validation metrics
cirr_results_dict = cirr_compute_val_metrics(cirr_relative_val_dataset, text_encoder,
cirr_val_index_features, cirr_val_index_names,
cirr_val_ref_names_list, cirr_val_pseudo_tokens)
check_list = ['cirr_recall_at1', 'cirr_recall_at5', 'cirr_recall_at10', 'cirr_recall_at50']
for check_key in check_list:
accelerator.log({f"validate/{check_key}": cirr_results_dict[check_key]}, step=global_step)
print(json.dumps(cirr_results_dict, indent=4))
# Save the best model.
if args.checkpointing_steps:
if cirr_results_dict['cirr_recall_at1'] > best_recall:
best_recall = cirr_results_dict['cirr_recall_at1']
logger.info(f"best model saving... step: {global_step}")
save_phi("phi_best", global_step, accelerator.unwrap_model(phi), args.output_dir)
phi.train()
if global_step >= args.max_train_steps:
break
if __name__ == '__main__':
args = parse_args()
train_phi(args)
|