navidved commited on
Commit
25ca65d
·
verified ·
1 Parent(s): 05662b4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -0
app.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load the model
5
+ pipe = pipeline("automatic-speech-recognition", model="vargha/whisper-large-v3")
6
+
7
+ # Define the inference function
8
+ def transcribe_audio(audio):
9
+ if audio is None:
10
+ return "No audio file uploaded. Please try again."
11
+
12
+ try:
13
+ # Perform transcription
14
+ result = pipe(audio)["text"]
15
+ return result
16
+ except Exception as e:
17
+ return f"Error during transcription: {str(e)}"
18
+
19
+ # Create a Gradio interface for uploading audio or using the microphone
20
+ with gr.Blocks() as interface:
21
+ gr.Markdown("# Whisper Large V3 Speech Recognition")
22
+ gr.Markdown("Upload an audio file or use your microphone to transcribe speech to text.")
23
+
24
+ # Create the input and output components
25
+ audio_input = gr.Audio(type="filepath", label="Input Audio")
26
+ output_text = gr.Textbox(label="Transcription")
27
+
28
+ # Add a button to trigger the transcription
29
+ transcribe_button = gr.Button("Transcribe")
30
+
31
+ # Bind the transcribe_audio function to the button click
32
+ transcribe_button.click(fn=transcribe_audio, inputs=audio_input, outputs=output_text)
33
+
34
+ # Launch the Gradio app
35
+ interface.launch()