File size: 5,129 Bytes
758f3f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f6582c
758f3f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse
import tensorflow as tf
import numpy as np
import os
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
from tensorflow.keras.layers import Layer, Conv2D, Softmax, Concatenate
import shutil
import uvicorn
import requests

app = FastAPI()

# Directory where models are stored
MODEL_DIRECTORY = "dsanet_models"

# Plant disease class names
plant_disease_dict = {
    "Rice": ['Blight', 'Brown_Spots'],
    "Tomato": ['Tomato___Bacterial_spot', 'Tomato___Early_blight', 'Tomato___Late_blight',
               'Tomato___Leaf_Mold', 'Tomato___Septoria_leaf_spot',
               'Tomato___Spider_mites Two-spotted_spider_mite',
               'Tomato___Target_Spot', 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
               'Tomato___Tomato_mosaic_virus', 'Tomato___healthy'],
    "Strawberry": ['Strawberry___Leaf_scorch', 'Strawberry___healthy'],
    "Potato": ['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy'],
    "Pepperbell": ['Pepper,_bell___Bacterial_spot', 'Pepper,_bell___healthy'],
    "Peach": ['Peach___Bacterial_spot', 'Peach___healthy'],
    "Grape": ['Grape___Black_rot', 'Grape___Esca_(Black_Measles)',
              'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)', 'Grape___healthy'],
    "Apple": ['Apple___Apple_scab', 'Apple___Black_rot', 'Apple___Cedar_apple_rust', 'Apple___healthy'],
    "Cherry": ['Cherry___Powdery_mildew', 'Cherry___healthy'],
    "Corn": ['Corn___Cercospora_leaf_spot Gray_leaf_spot', 'Corn___Common_rust',
             'Corn___Northern_Leaf_Blight', 'Corn___healthy']
}

# Custom Self-Attention Layer
@tf.keras.utils.register_keras_serializable()
class SelfAttention(Layer):
    def __init__(self, reduction_ratio=2, **kwargs):
        super(SelfAttention, self).__init__(**kwargs)
        self.reduction_ratio = reduction_ratio

    def build(self, input_shape):
        n_channels = input_shape[-1] // self.reduction_ratio
        self.query_conv = Conv2D(n_channels, kernel_size=1, use_bias=False)
        self.key_conv = Conv2D(n_channels, kernel_size=1, use_bias=False)
        self.value_conv = Conv2D(n_channels, kernel_size=1, use_bias=False)
        super(SelfAttention, self).build(input_shape)

    def call(self, inputs):
        query = self.query_conv(inputs)
        key = self.key_conv(inputs)
        value = self.value_conv(inputs)

        # Calculate attention scores
        attention_scores = tf.matmul(query, key, transpose_b=True)
        attention_scores = Softmax(axis=1)(attention_scores)

        # Apply attention to values
        attended_value = tf.matmul(attention_scores, value)
        concatenated_output = Concatenate(axis=-1)([inputs, attended_value])
        return concatenated_output

    def get_config(self):
        config = super(SelfAttention, self).get_config()
        config.update({"reduction_ratio": self.reduction_ratio})
        return config

@app.get("/health")
async def api_health_check():
    return JSONResponse(content={"status": "Service is running"})
@app.post("/predict/{plant_name}")
async def predict_plant_disease(plant_name: str, file: UploadFile = File(...)):
    """
    API endpoint to predict plant disease from an uploaded image.

    Args:
        plant_name (str): The plant type (must match a key in `plant_disease_dict`).
        file (UploadFile): The image file uploaded by the user.

    Returns:
        JSON response with the predicted class.
    """
    # Ensure the plant name is valid
    if plant_name not in plant_disease_dict:
        raise HTTPException(status_code=400, detail="Invalid plant name")

    # Construct the model path
    model_path = os.path.join(MODEL_DIRECTORY, f"model_{plant_name}.keras")
    if plant_name == "Rice":
        model = load_model(model_path)
    else:
        model = load_model(model_path, custom_objects={"SelfAttention": SelfAttention})


    # Check if the model exists
    if not os.path.isfile(model_path):
        raise HTTPException(status_code=404, detail=f"Model file '{plant_name}_model.keras' not found")

    # Save uploaded file temporarily
    temp_path = f"temp_image_{file.filename}"
    with open(temp_path, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)

    try:
        # Load model
        model = load_model(model_path, custom_objects={"SelfAttention": SelfAttention})

        # Load and preprocess the image
        img = image.load_img(temp_path, target_size=(224, 224))
        img_array = image.img_to_array(img)
        img_array = np.expand_dims(img_array, axis=0)  # Expand dimensions for model input
        img_array = img_array / 255.0  # Normalize

        # Make prediction
        prediction = model.predict(img_array)
        predicted_class = plant_disease_dict[plant_name][np.argmax(prediction)]

        return JSONResponse(content={"plant": plant_name, "predicted_disease": predicted_class})
    finally:
        # Clean up temporary file
        os.remove(temp_path)
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)