File size: 16,098 Bytes
852ac26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from django.shortcuts import render, redirect
import torch
import torchvision
from torchvision import transforms, models
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import face_recognition
from torch.autograd import Variable
import time
import sys
from torch import nn
import json
import glob
import copy
from torchvision import models
import shutil
from PIL import Image as pImage
import time
from django.conf import settings
from .forms import VideoUploadForm

index_template_name = 'index.html'
predict_template_name = 'predict.html'

im_size = 112
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
sm = nn.Softmax()
inv_normalize =  transforms.Normalize(mean=-1*np.divide(mean,std),std=np.divide([1,1,1],std))

train_transforms = transforms.Compose([
                                        transforms.ToPILImage(),
                                        transforms.Resize((im_size,im_size)),
                                        transforms.ToTensor(),
                                        transforms.Normalize(mean,std)])

class Model(nn.Module):

    def __init__(self, num_classes,latent_dim= 2048, lstm_layers=1 , hidden_dim = 2048, bidirectional = False):
        super(Model, self).__init__()
        model = models.resnext50_32x4d(pretrained = True)
        self.model = nn.Sequential(*list(model.children())[:-2])
        self.lstm = nn.LSTM(latent_dim,hidden_dim, lstm_layers,  bidirectional)
        self.relu = nn.LeakyReLU()
        self.dp = nn.Dropout(0.4)
        self.linear1 = nn.Linear(2048,num_classes)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
        batch_size,seq_length, c, h, w = x.shape
        x = x.view(batch_size * seq_length, c, h, w)
        fmap = self.model(x)
        x = self.avgpool(fmap)
        x = x.view(batch_size,seq_length,2048)
        x_lstm,_ = self.lstm(x,None)
        return fmap,self.dp(self.linear1(x_lstm[:,-1,:]))


class validation_dataset(Dataset):
    def __init__(self,video_names,sequence_length=60,transform = None):
        self.video_names = video_names
        self.transform = transform
        self.count = sequence_length

    def __len__(self):
        return len(self.video_names)

    def __getitem__(self,idx):
        video_path = self.video_names[idx]
        frames = []
        a = int(100/self.count)
        first_frame = np.random.randint(0,a)
        for i,frame in enumerate(self.frame_extract(video_path)):
            #if(i % a == first_frame):
            faces = face_recognition.face_locations(frame)
            try:
              top,right,bottom,left = faces[0]
              frame = frame[top:bottom,left:right,:]
            except:
              pass
            frames.append(self.transform(frame))
            if(len(frames) == self.count):
                break
        """

        for i,frame in enumerate(self.frame_extract(video_path)):

            if(i % a == first_frame):

                frames.append(self.transform(frame))

        """        
        # if(len(frames)<self.count):
        #   for i in range(self.count-len(frames)):
        #         frames.append(self.transform(frame))
        #print("no of frames", self.count)
        frames = torch.stack(frames)
        frames = frames[:self.count]
        return frames.unsqueeze(0)
    
    def frame_extract(self,path):
      vidObj = cv2.VideoCapture(path) 
      success = 1
      while success:
          success, image = vidObj.read()
          if success:
              yield image

def im_convert(tensor, video_file_name):
    """ Display a tensor as an image. """
    image = tensor.to("cpu").clone().detach()
    image = image.squeeze()
    image = inv_normalize(image)
    image = image.numpy()
    image = image.transpose(1,2,0)
    image = image.clip(0, 1)
    # This image is not used
    # cv2.imwrite(os.path.join(settings.PROJECT_DIR, 'uploaded_images', video_file_name+'_convert_2.png'),image*255)
    return image

def im_plot(tensor):
    image = tensor.cpu().numpy().transpose(1,2,0)
    b,g,r = cv2.split(image)
    image = cv2.merge((r,g,b))
    image = image*[0.22803, 0.22145, 0.216989] +  [0.43216, 0.394666, 0.37645]
    image = image*255.0
    plt.imshow(image.astype(int))
    plt.show()


def predict(model,img,path = './', video_file_name=""):
  fmap,logits = model(img.to('cuda'))
  img = im_convert(img[:,-1,:,:,:], video_file_name)
  params = list(model.parameters())
  weight_softmax = model.linear1.weight.detach().cpu().numpy()
  logits = sm(logits)
  _,prediction = torch.max(logits,1)
  confidence = logits[:,int(prediction.item())].item()*100
  print('confidence of prediction:',logits[:,int(prediction.item())].item()*100)  
  return [int(prediction.item()),confidence]

def plot_heat_map(i, model, img, path = './', video_file_name=''):
  fmap,logits = model(img.to('cuda'))
  params = list(model.parameters())
  weight_softmax = model.linear1.weight.detach().cpu().numpy()
  logits = sm(logits)
  _,prediction = torch.max(logits,1)
  idx = np.argmax(logits.detach().cpu().numpy())
  bz, nc, h, w = fmap.shape
  #out = np.dot(fmap[-1].detach().cpu().numpy().reshape((nc, h*w)).T,weight_softmax[idx,:].T)
  out = np.dot(fmap[i].detach().cpu().numpy().reshape((nc, h*w)).T,weight_softmax[idx,:].T)
  predict = out.reshape(h,w)
  predict = predict - np.min(predict)
  predict_img = predict / np.max(predict)
  predict_img = np.uint8(255*predict_img)
  out = cv2.resize(predict_img, (im_size,im_size))
  heatmap = cv2.applyColorMap(out, cv2.COLORMAP_JET)
  img = im_convert(img[:,-1,:,:,:], video_file_name)
  result = heatmap * 0.5 + img*0.8*255
  # Saving heatmap - Start
  heatmap_name = video_file_name+"_heatmap_"+str(i)+".png"
  image_name = os.path.join(settings.PROJECT_DIR, 'uploaded_images', heatmap_name)
  cv2.imwrite(image_name,result)
  # Saving heatmap - End
  result1 = heatmap * 0.5/255 + img*0.8
  r,g,b = cv2.split(result1)
  result1 = cv2.merge((r,g,b))
  return image_name

# Model Selection
def get_accurate_model(sequence_length):
    model_name = []
    sequence_model = []
    final_model = ""
    list_models = glob.glob(os.path.join(settings.PROJECT_DIR, "models", "*.pt"))
    for i in list_models:
        model_name.append(i.split("\\")[-1])
    for i in model_name:
        try:
            seq = i.split("_")[3]
            if (int(seq) == sequence_length):
                sequence_model.append(i)
        except:
            pass

    if len(sequence_model) > 1:
        accuracy = []
        for i in sequence_model:
            acc = i.split("_")[1]
            accuracy.append(acc)
        max_index = accuracy.index(max(accuracy))
        final_model = sequence_model[max_index]
    else:
        final_model = sequence_model[0]
    return final_model

ALLOWED_VIDEO_EXTENSIONS = set(['mp4','gif','webm','avi','3gp','wmv','flv','mkv'])

def allowed_video_file(filename):
    #print("filename" ,filename.rsplit('.',1)[1].lower())
    if (filename.rsplit('.',1)[1].lower() in ALLOWED_VIDEO_EXTENSIONS):
        return True
    else: 
        return False
def index(request):
    if request.method == 'GET':
        video_upload_form = VideoUploadForm()
        if 'file_name' in request.session:
            del request.session['file_name']
        if 'preprocessed_images' in request.session:
            del request.session['preprocessed_images']
        if 'faces_cropped_images' in request.session:
            del request.session['faces_cropped_images']
        return render(request, index_template_name, {"form": video_upload_form})
    else:
        video_upload_form = VideoUploadForm(request.POST, request.FILES)
        if video_upload_form.is_valid():
            video_file = video_upload_form.cleaned_data['upload_video_file']
            video_file_ext = video_file.name.split('.')[-1]
            sequence_length = video_upload_form.cleaned_data['sequence_length']
            video_content_type = video_file.content_type.split('/')[0]
            if video_content_type in settings.CONTENT_TYPES:
                if video_file.size > int(settings.MAX_UPLOAD_SIZE):
                    video_upload_form.add_error("upload_video_file", "Maximum file size 100 MB")
                    return render(request, index_template_name, {"form": video_upload_form})

            if sequence_length <= 0:
                video_upload_form.add_error("sequence_length", "Sequence Length must be greater than 0")
                return render(request, index_template_name, {"form": video_upload_form})
            
            if allowed_video_file(video_file.name) == False:
                video_upload_form.add_error("upload_video_file","Only video files are allowed ")
                return render(request, index_template_name, {"form": video_upload_form})
            
            saved_video_file = 'uploaded_file_'+str(int(time.time()))+"."+video_file_ext
            if settings.DEBUG:
                with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file), 'wb') as vFile:
                    shutil.copyfileobj(video_file, vFile)
                request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file)
            else:
                with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file), 'wb') as vFile:
                    shutil.copyfileobj(video_file, vFile)
                request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file)
            request.session['sequence_length'] = sequence_length
            return redirect('ml_app:predict')
        else:
            return render(request, index_template_name, {"form": video_upload_form})

def predict_page(request):
    if request.method == "GET":
        if 'file_name' not in request.session:
            return redirect("ml_app:home")
        if 'file_name' in request.session:
            video_file = request.session['file_name']
        if 'sequence_length' in request.session:
            sequence_length = request.session['sequence_length']
        path_to_videos = [video_file]
        video_file_name = video_file.split('\\')[-1]
        if settings.DEBUG == False:
            production_video_name = video_file_name.split('/')[3:]
            production_video_name = '/'.join([str(elem) for elem in production_video_name])
            print("Production file name",production_video_name)
        video_file_name_only = video_file_name.split('.')[0]
        video_dataset = validation_dataset(path_to_videos, sequence_length=sequence_length,transform= train_transforms)
        model = Model(2).cuda()
        model_name = os.path.join(settings.PROJECT_DIR,'models', get_accurate_model(sequence_length))
        models_location = os.path.join(settings.PROJECT_DIR,'models')
        path_to_model = os.path.join(settings.PROJECT_DIR, model_name)
        model.load_state_dict(torch.load(path_to_model))
        model.eval()
        start_time = time.time()
        # Start: Displaying preprocessing images
        print("<=== | Started Videos Splitting | ===>")
        preprocessed_images = []
        faces_cropped_images = []
        cap = cv2.VideoCapture(video_file)

        frames = []
        while(cap.isOpened()):
            ret, frame = cap.read()
            if ret==True:
                frames.append(frame)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                break
        cap.release()

        for i in range(1, sequence_length+1):
            frame = frames[i]
            image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            img = pImage.fromarray(image, 'RGB')
            image_name = video_file_name_only+"_preprocessed_"+str(i)+'.png'
            if settings.DEBUG:
                image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', image_name)
            else:
                print("image_name",image_name)
                image_path = "/home/app/staticfiles" + image_name
            img.save(image_path)
            preprocessed_images.append(image_name)
        print("<=== | Videos Splitting Done | ===>")
        print("--- %s seconds ---" % (time.time() - start_time))
        # End: Displaying preprocessing images


        # Start: Displaying Faces Cropped Images
        print("<=== | Started Face Cropping Each Frame | ===>")
        padding = 40
        faces_found = 0
        for i in range(1, sequence_length+1):
            frame = frames[i]
            #fig, ax = plt.subplots(1,1, figsize=(5, 5))
            face_locations = face_recognition.face_locations(frame)
            if len(face_locations) == 0:
                continue
            top, right, bottom, left = face_locations[0]
            frame_face = frame[top-padding:bottom+padding, left-padding:right+padding]
            image = cv2.cvtColor(frame_face, cv2.COLOR_BGR2RGB)

            img = pImage.fromarray(image, 'RGB')
            image_name = video_file_name_only+"_cropped_faces_"+str(i)+'.png'
            if settings.DEBUG:
                image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', video_file_name_only+"_cropped_faces_"+str(i)+'.png')
            else:
                image_path = "/home/app/staticfiles" + image_name
            img.save(image_path)
            faces_found = faces_found + 1
            faces_cropped_images.append(image_name)
        print("<=== | Face Cropping Each Frame Done | ===>")
        print("--- %s seconds ---" % (time.time() - start_time))

        # No face is detected
        if faces_found == 0:
            return render(request, predict_template_name, {"no_faces": True})

        # End: Displaying Faces Cropped Images
        try:
            heatmap_images = []
            for i in range(0, len(path_to_videos)):
                output = ""
                print("<=== | Started Predicition | ===>")
                prediction = predict(model, video_dataset[i], './', video_file_name_only)
                confidence = round(prediction[1], 1)
                print("<=== |  Predicition Done | ===>")
                # print("<=== | Heat map creation started | ===>")
                # for j in range(0, sequence_length):
                #     heatmap_images.append(plot_heat_map(j, model, video_dataset[i], './', video_file_name_only))
                if prediction[0] == 1:
                    output = "REAL"
                else:
                    output = "FAKE"
                print("Prediction : " , prediction[0],"==",output ,"Confidence : " , confidence)
                print("--- %s seconds ---" % (time.time() - start_time))
            if settings.DEBUG:
                return render(request, predict_template_name, {'preprocessed_images': preprocessed_images, 'heatmap_images': heatmap_images, "faces_cropped_images": faces_cropped_images, "original_video": video_file_name, "models_location": models_location, "output": output, "confidence": confidence})
            else:
                return render(request, predict_template_name, {'preprocessed_images': preprocessed_images, 'heatmap_images': heatmap_images, "faces_cropped_images": faces_cropped_images, "original_video": production_video_name, "models_location": models_location, "output": output, "confidence": confidence})
        except:
            return render(request, 'cuda_full.html')
def about(request):
    return render(request, about_template_name)

def handler404(request,exception):
    return render(request, '404.html', status=404)
def cuda_full(request):
    return render(request, 'cuda_full.html')