test / ml_app /views.py
navpan2's picture
Upload 84 files
852ac26 verified
raw
history blame
16.1 kB
from django.shortcuts import render, redirect
import torch
import torchvision
from torchvision import transforms, models
from torch.utils.data import DataLoader
from torch.utils.data.dataset import Dataset
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import face_recognition
from torch.autograd import Variable
import time
import sys
from torch import nn
import json
import glob
import copy
from torchvision import models
import shutil
from PIL import Image as pImage
import time
from django.conf import settings
from .forms import VideoUploadForm
index_template_name = 'index.html'
predict_template_name = 'predict.html'
im_size = 112
mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
sm = nn.Softmax()
inv_normalize = transforms.Normalize(mean=-1*np.divide(mean,std),std=np.divide([1,1,1],std))
train_transforms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((im_size,im_size)),
transforms.ToTensor(),
transforms.Normalize(mean,std)])
class Model(nn.Module):
def __init__(self, num_classes,latent_dim= 2048, lstm_layers=1 , hidden_dim = 2048, bidirectional = False):
super(Model, self).__init__()
model = models.resnext50_32x4d(pretrained = True)
self.model = nn.Sequential(*list(model.children())[:-2])
self.lstm = nn.LSTM(latent_dim,hidden_dim, lstm_layers, bidirectional)
self.relu = nn.LeakyReLU()
self.dp = nn.Dropout(0.4)
self.linear1 = nn.Linear(2048,num_classes)
self.avgpool = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
batch_size,seq_length, c, h, w = x.shape
x = x.view(batch_size * seq_length, c, h, w)
fmap = self.model(x)
x = self.avgpool(fmap)
x = x.view(batch_size,seq_length,2048)
x_lstm,_ = self.lstm(x,None)
return fmap,self.dp(self.linear1(x_lstm[:,-1,:]))
class validation_dataset(Dataset):
def __init__(self,video_names,sequence_length=60,transform = None):
self.video_names = video_names
self.transform = transform
self.count = sequence_length
def __len__(self):
return len(self.video_names)
def __getitem__(self,idx):
video_path = self.video_names[idx]
frames = []
a = int(100/self.count)
first_frame = np.random.randint(0,a)
for i,frame in enumerate(self.frame_extract(video_path)):
#if(i % a == first_frame):
faces = face_recognition.face_locations(frame)
try:
top,right,bottom,left = faces[0]
frame = frame[top:bottom,left:right,:]
except:
pass
frames.append(self.transform(frame))
if(len(frames) == self.count):
break
"""
for i,frame in enumerate(self.frame_extract(video_path)):
if(i % a == first_frame):
frames.append(self.transform(frame))
"""
# if(len(frames)<self.count):
# for i in range(self.count-len(frames)):
# frames.append(self.transform(frame))
#print("no of frames", self.count)
frames = torch.stack(frames)
frames = frames[:self.count]
return frames.unsqueeze(0)
def frame_extract(self,path):
vidObj = cv2.VideoCapture(path)
success = 1
while success:
success, image = vidObj.read()
if success:
yield image
def im_convert(tensor, video_file_name):
""" Display a tensor as an image. """
image = tensor.to("cpu").clone().detach()
image = image.squeeze()
image = inv_normalize(image)
image = image.numpy()
image = image.transpose(1,2,0)
image = image.clip(0, 1)
# This image is not used
# cv2.imwrite(os.path.join(settings.PROJECT_DIR, 'uploaded_images', video_file_name+'_convert_2.png'),image*255)
return image
def im_plot(tensor):
image = tensor.cpu().numpy().transpose(1,2,0)
b,g,r = cv2.split(image)
image = cv2.merge((r,g,b))
image = image*[0.22803, 0.22145, 0.216989] + [0.43216, 0.394666, 0.37645]
image = image*255.0
plt.imshow(image.astype(int))
plt.show()
def predict(model,img,path = './', video_file_name=""):
fmap,logits = model(img.to('cuda'))
img = im_convert(img[:,-1,:,:,:], video_file_name)
params = list(model.parameters())
weight_softmax = model.linear1.weight.detach().cpu().numpy()
logits = sm(logits)
_,prediction = torch.max(logits,1)
confidence = logits[:,int(prediction.item())].item()*100
print('confidence of prediction:',logits[:,int(prediction.item())].item()*100)
return [int(prediction.item()),confidence]
def plot_heat_map(i, model, img, path = './', video_file_name=''):
fmap,logits = model(img.to('cuda'))
params = list(model.parameters())
weight_softmax = model.linear1.weight.detach().cpu().numpy()
logits = sm(logits)
_,prediction = torch.max(logits,1)
idx = np.argmax(logits.detach().cpu().numpy())
bz, nc, h, w = fmap.shape
#out = np.dot(fmap[-1].detach().cpu().numpy().reshape((nc, h*w)).T,weight_softmax[idx,:].T)
out = np.dot(fmap[i].detach().cpu().numpy().reshape((nc, h*w)).T,weight_softmax[idx,:].T)
predict = out.reshape(h,w)
predict = predict - np.min(predict)
predict_img = predict / np.max(predict)
predict_img = np.uint8(255*predict_img)
out = cv2.resize(predict_img, (im_size,im_size))
heatmap = cv2.applyColorMap(out, cv2.COLORMAP_JET)
img = im_convert(img[:,-1,:,:,:], video_file_name)
result = heatmap * 0.5 + img*0.8*255
# Saving heatmap - Start
heatmap_name = video_file_name+"_heatmap_"+str(i)+".png"
image_name = os.path.join(settings.PROJECT_DIR, 'uploaded_images', heatmap_name)
cv2.imwrite(image_name,result)
# Saving heatmap - End
result1 = heatmap * 0.5/255 + img*0.8
r,g,b = cv2.split(result1)
result1 = cv2.merge((r,g,b))
return image_name
# Model Selection
def get_accurate_model(sequence_length):
model_name = []
sequence_model = []
final_model = ""
list_models = glob.glob(os.path.join(settings.PROJECT_DIR, "models", "*.pt"))
for i in list_models:
model_name.append(i.split("\\")[-1])
for i in model_name:
try:
seq = i.split("_")[3]
if (int(seq) == sequence_length):
sequence_model.append(i)
except:
pass
if len(sequence_model) > 1:
accuracy = []
for i in sequence_model:
acc = i.split("_")[1]
accuracy.append(acc)
max_index = accuracy.index(max(accuracy))
final_model = sequence_model[max_index]
else:
final_model = sequence_model[0]
return final_model
ALLOWED_VIDEO_EXTENSIONS = set(['mp4','gif','webm','avi','3gp','wmv','flv','mkv'])
def allowed_video_file(filename):
#print("filename" ,filename.rsplit('.',1)[1].lower())
if (filename.rsplit('.',1)[1].lower() in ALLOWED_VIDEO_EXTENSIONS):
return True
else:
return False
def index(request):
if request.method == 'GET':
video_upload_form = VideoUploadForm()
if 'file_name' in request.session:
del request.session['file_name']
if 'preprocessed_images' in request.session:
del request.session['preprocessed_images']
if 'faces_cropped_images' in request.session:
del request.session['faces_cropped_images']
return render(request, index_template_name, {"form": video_upload_form})
else:
video_upload_form = VideoUploadForm(request.POST, request.FILES)
if video_upload_form.is_valid():
video_file = video_upload_form.cleaned_data['upload_video_file']
video_file_ext = video_file.name.split('.')[-1]
sequence_length = video_upload_form.cleaned_data['sequence_length']
video_content_type = video_file.content_type.split('/')[0]
if video_content_type in settings.CONTENT_TYPES:
if video_file.size > int(settings.MAX_UPLOAD_SIZE):
video_upload_form.add_error("upload_video_file", "Maximum file size 100 MB")
return render(request, index_template_name, {"form": video_upload_form})
if sequence_length <= 0:
video_upload_form.add_error("sequence_length", "Sequence Length must be greater than 0")
return render(request, index_template_name, {"form": video_upload_form})
if allowed_video_file(video_file.name) == False:
video_upload_form.add_error("upload_video_file","Only video files are allowed ")
return render(request, index_template_name, {"form": video_upload_form})
saved_video_file = 'uploaded_file_'+str(int(time.time()))+"."+video_file_ext
if settings.DEBUG:
with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file), 'wb') as vFile:
shutil.copyfileobj(video_file, vFile)
request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos', saved_video_file)
else:
with open(os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file), 'wb') as vFile:
shutil.copyfileobj(video_file, vFile)
request.session['file_name'] = os.path.join(settings.PROJECT_DIR, 'uploaded_videos','app','uploaded_videos', saved_video_file)
request.session['sequence_length'] = sequence_length
return redirect('ml_app:predict')
else:
return render(request, index_template_name, {"form": video_upload_form})
def predict_page(request):
if request.method == "GET":
if 'file_name' not in request.session:
return redirect("ml_app:home")
if 'file_name' in request.session:
video_file = request.session['file_name']
if 'sequence_length' in request.session:
sequence_length = request.session['sequence_length']
path_to_videos = [video_file]
video_file_name = video_file.split('\\')[-1]
if settings.DEBUG == False:
production_video_name = video_file_name.split('/')[3:]
production_video_name = '/'.join([str(elem) for elem in production_video_name])
print("Production file name",production_video_name)
video_file_name_only = video_file_name.split('.')[0]
video_dataset = validation_dataset(path_to_videos, sequence_length=sequence_length,transform= train_transforms)
model = Model(2).cuda()
model_name = os.path.join(settings.PROJECT_DIR,'models', get_accurate_model(sequence_length))
models_location = os.path.join(settings.PROJECT_DIR,'models')
path_to_model = os.path.join(settings.PROJECT_DIR, model_name)
model.load_state_dict(torch.load(path_to_model))
model.eval()
start_time = time.time()
# Start: Displaying preprocessing images
print("<=== | Started Videos Splitting | ===>")
preprocessed_images = []
faces_cropped_images = []
cap = cv2.VideoCapture(video_file)
frames = []
while(cap.isOpened()):
ret, frame = cap.read()
if ret==True:
frames.append(frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
cap.release()
for i in range(1, sequence_length+1):
frame = frames[i]
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = pImage.fromarray(image, 'RGB')
image_name = video_file_name_only+"_preprocessed_"+str(i)+'.png'
if settings.DEBUG:
image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', image_name)
else:
print("image_name",image_name)
image_path = "/home/app/staticfiles" + image_name
img.save(image_path)
preprocessed_images.append(image_name)
print("<=== | Videos Splitting Done | ===>")
print("--- %s seconds ---" % (time.time() - start_time))
# End: Displaying preprocessing images
# Start: Displaying Faces Cropped Images
print("<=== | Started Face Cropping Each Frame | ===>")
padding = 40
faces_found = 0
for i in range(1, sequence_length+1):
frame = frames[i]
#fig, ax = plt.subplots(1,1, figsize=(5, 5))
face_locations = face_recognition.face_locations(frame)
if len(face_locations) == 0:
continue
top, right, bottom, left = face_locations[0]
frame_face = frame[top-padding:bottom+padding, left-padding:right+padding]
image = cv2.cvtColor(frame_face, cv2.COLOR_BGR2RGB)
img = pImage.fromarray(image, 'RGB')
image_name = video_file_name_only+"_cropped_faces_"+str(i)+'.png'
if settings.DEBUG:
image_path = os.path.join(settings.PROJECT_DIR, 'uploaded_images', video_file_name_only+"_cropped_faces_"+str(i)+'.png')
else:
image_path = "/home/app/staticfiles" + image_name
img.save(image_path)
faces_found = faces_found + 1
faces_cropped_images.append(image_name)
print("<=== | Face Cropping Each Frame Done | ===>")
print("--- %s seconds ---" % (time.time() - start_time))
# No face is detected
if faces_found == 0:
return render(request, predict_template_name, {"no_faces": True})
# End: Displaying Faces Cropped Images
try:
heatmap_images = []
for i in range(0, len(path_to_videos)):
output = ""
print("<=== | Started Predicition | ===>")
prediction = predict(model, video_dataset[i], './', video_file_name_only)
confidence = round(prediction[1], 1)
print("<=== | Predicition Done | ===>")
# print("<=== | Heat map creation started | ===>")
# for j in range(0, sequence_length):
# heatmap_images.append(plot_heat_map(j, model, video_dataset[i], './', video_file_name_only))
if prediction[0] == 1:
output = "REAL"
else:
output = "FAKE"
print("Prediction : " , prediction[0],"==",output ,"Confidence : " , confidence)
print("--- %s seconds ---" % (time.time() - start_time))
if settings.DEBUG:
return render(request, predict_template_name, {'preprocessed_images': preprocessed_images, 'heatmap_images': heatmap_images, "faces_cropped_images": faces_cropped_images, "original_video": video_file_name, "models_location": models_location, "output": output, "confidence": confidence})
else:
return render(request, predict_template_name, {'preprocessed_images': preprocessed_images, 'heatmap_images': heatmap_images, "faces_cropped_images": faces_cropped_images, "original_video": production_video_name, "models_location": models_location, "output": output, "confidence": confidence})
except:
return render(request, 'cuda_full.html')
def about(request):
return render(request, about_template_name)
def handler404(request,exception):
return render(request, '404.html', status=404)
def cuda_full(request):
return render(request, 'cuda_full.html')