## LIBRARIES ### ## Data import pandas as pd pd.options.display.float_format = '${:,.2f}'.format # Analysis # App & Visualization import streamlit as st from bokeh.models import CustomJS, ColumnDataSource, TextInput, DataTable, TableColumn from bokeh.plotting import figure from bokeh.transform import factor_cmap from bokeh.palettes import Category20c_20 from bokeh.layouts import column, row # utils def datasets_explorer_viz(df): s = ColumnDataSource(df) TOOLTIPS= [("dataset_id", "@dataset_id"), ("task", "@task")] color = factor_cmap('task', palette=Category20c_20, factors=df['task'].unique()) p = figure(plot_width=1000, plot_height=800, tools="hover,wheel_zoom,pan,box_select", tooltips=TOOLTIPS, toolbar_location="above") p.scatter('x', 'y', size=5, source=s, alpha=0.8,marker='circle',fill_color = color, line_color=color, legend_field = 'task') p.legend.location = "bottom_right" p.legend.click_policy="mute" p.legend.label_text_font_size="8pt" table_source = ColumnDataSource(data=dict()) selection_source = ColumnDataSource(data=dict()) columns = [ # TableColumn(field="x", title="X data"), # TableColumn(field="y", title="Y data"), TableColumn(field="task", title="Task"), TableColumn(field="dataset_id", title="Dataset ID"), ] data_table = DataTable(source=table_source, columns=columns, width=500) p.circle('x', 'y',source=selection_source, size=5, color= 'red') s.selected.js_on_change('indices', CustomJS(args=dict(umap_source=s, table_source=table_source), code=""" const inds = cb_obj.indices; const tableData = table_source.data; const umapData = umap_source.data; tableData['task'] = [] tableData['dataset_id'] = [] for (let i = 0; i < inds.length; i++) { tableData['task'].push(umapData['task'][inds[i]]) tableData['dataset_id'].push(umapData['dataset_id'][inds[i]]) } table_source.data = tableData; table_source.change.emit(); """ )) text_input = TextInput(value="", title="Search") #text_input.on_change("value_input", text_input.js_on_change('value', CustomJS(args=dict(plot_source=s, selection_source=selection_source), code=""" const plot_data = plot_source.data; const selectData = selection_source.data const value = cb_obj.value selectData['x'] = [] selectData['y'] = [] selectData['dataset_id'] = [] selectData['task'] = [] for (var i = 0; i < plot_data['dataset_id'].length; i++) { if (plot_data['dataset_id'][i].includes(value) || plot_data['task'][i].includes(value)) { selectData['x'].push(plot_data['x'][i]) selectData['y'].push(plot_data['y'][i]) selectData['dataset_id'].push(plot_data['dataset_id'][i]) selectData['task'].push(plot_data['task'][i]) } } selection_source.change.emit() """)) st.bokeh_chart(row(column(text_input,p), data_table)) if __name__ == "__main__": ### STREAMLIT APP CONGFIG ### st.set_page_config(layout="wide", page_title="Datasets Explorer") st.title('Interactive Datasets Explorer') #lcol, rcol = st.columns([2, 2]) # ******* loading the mode and the data ### LOAD DATA AND SESSION VARIABLES ### with st.expander("How to interact with the plot:"): st.markdown("* Each point in the plot represents a HF hub dataset categorized by their `task_id`.") st.markdown("* Every dataset is emebdded using the [SPECTER](https://github.com/allenai/specter#advanced-training-your-own-model) embedding of its corresponding paper abstract.") st.markdown("* You can either search for a dataset or drag and select to peek into the cluster content.") datasets_df = pd.read_parquet('./assets/data/datasets_df.parquet') st.warning("Hugging Face 🤗 Datasets Explorer") datasets_explorer_viz(datasets_df)