Spaces:
Configuration error
Configuration error
Tristan Thrush
commited on
Commit
·
460dbe4
1
Parent(s):
d94c767
initial example of rlhf
Browse files- README.md +51 -1
- app.py +203 -0
- collect.py +55 -0
- config.py.example +6 -0
- requirements.txt +6 -0
- utils.py +39 -0
README.md
CHANGED
@@ -1 +1,51 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: RLHF
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.0.17
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
A basic example of an RLHF interface with a Gradio app.
|
13 |
+
|
14 |
+
**Instructions for someone to use for their own project:**
|
15 |
+
|
16 |
+
*Setting up the Space*
|
17 |
+
1. Clone this repo and deploy it on your own Hugging Face space.
|
18 |
+
2. Add the following secrets to your space:
|
19 |
+
- `HF_TOKEN`: One of your Hugging Face tokens.
|
20 |
+
- `DATASET_REPO_URL`: The url to an empty dataset that you created the hub. It
|
21 |
+
can be a private or public dataset.
|
22 |
+
- `FORCE_PUSH`: "yes"
|
23 |
+
When you run this space on mturk and when people visit your space on
|
24 |
+
huggingface.co, the app will use your token to automatically store new HITs
|
25 |
+
in your dataset. Setting `FORCE_PUSH` to "yes" ensures that your repo will
|
26 |
+
force push changes to the dataset during data collection. Otherwise,
|
27 |
+
accidental manual changes to your dataset could result in your space gettin
|
28 |
+
merge conflicts as it automatically tries to push the dataset to the hub. For
|
29 |
+
local development, add these three keys to a `.env` file, and consider setting
|
30 |
+
`FORCE_PUSH` to "no".
|
31 |
+
*Running Data Collection*
|
32 |
+
1. On your local repo that you pulled, create a copy of `config.py.example`,
|
33 |
+
just called `config.py`. Now, put keys from your AWS account in `config.py`.
|
34 |
+
These keys should be for an AWS account that has the
|
35 |
+
AmazonMechanicalTurkFullAccess permission. You also need to
|
36 |
+
create an mturk requestor account associated with your AWS account.
|
37 |
+
2. Run `python collect.py` locally.
|
38 |
+
|
39 |
+
*Profit*
|
40 |
+
Now, you should be watching hits come into your Hugging Face dataset
|
41 |
+
automatically!
|
42 |
+
|
43 |
+
*Tips and Tricks*
|
44 |
+
- Use caution while doing local development of your space and
|
45 |
+
simultaneously running it on mturk. Consider setting `FORCE_PUSH` to "no" in
|
46 |
+
your local `.env` file.
|
47 |
+
- huggingface spaces have limited computational resources and memory. If you
|
48 |
+
run too many HITs and/or assignments at once, then you could encounter issues.
|
49 |
+
You could also encounter issues if you are trying to create a dataset that is
|
50 |
+
very large. Check the log of your space for any errors that could be happening.
|
51 |
+
|
app.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Basic example for doing model-in-the-loop dynamic adversarial data collection
|
2 |
+
# using Gradio Blocks.
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
import uuid
|
6 |
+
from urllib.parse import parse_qs
|
7 |
+
import gradio as gr
|
8 |
+
import requests
|
9 |
+
from transformers import pipeline, Conversation
|
10 |
+
from huggingface_hub import Repository
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from pathlib import Path
|
13 |
+
import json
|
14 |
+
from utils import force_git_push
|
15 |
+
import threading
|
16 |
+
|
17 |
+
# These variables are for storing the mturk HITs in a Hugging Face dataset.
|
18 |
+
if Path(".env").is_file():
|
19 |
+
load_dotenv(".env")
|
20 |
+
DATASET_REPO_URL = os.getenv("DATASET_REPO_URL")
|
21 |
+
FORCE_PUSH = os.getenv("FORCE_PUSH")
|
22 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
23 |
+
DATA_FILENAME = "data.jsonl"
|
24 |
+
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
25 |
+
repo = Repository(
|
26 |
+
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
27 |
+
)
|
28 |
+
|
29 |
+
TOTAL_CNT = 4 # How many user inputs per HIT
|
30 |
+
|
31 |
+
# This function pushes the HIT data written in data.jsonl to our Hugging Face
|
32 |
+
# dataset every minute. Adjust the frequency to suit your needs.
|
33 |
+
PUSH_FREQUENCY = 60
|
34 |
+
def asynchronous_push(f_stop):
|
35 |
+
if repo.is_repo_clean():
|
36 |
+
print("Repo currently clean. Ignoring push_to_hub")
|
37 |
+
else:
|
38 |
+
repo.git_add(auto_lfs_track=True)
|
39 |
+
repo.git_commit("Auto commit by space")
|
40 |
+
if FORCE_PUSH == "yes":
|
41 |
+
force_git_push(repo)
|
42 |
+
else:
|
43 |
+
repo.git_push()
|
44 |
+
if not f_stop.is_set():
|
45 |
+
# call again in 60 seconds
|
46 |
+
threading.Timer(PUSH_FREQUENCY, asynchronous_push, [f_stop]).start()
|
47 |
+
|
48 |
+
f_stop = threading.Event()
|
49 |
+
asynchronous_push(f_stop)
|
50 |
+
|
51 |
+
# Now let's run the app!
|
52 |
+
chatbot = pipeline(model="microsoft/DialoGPT-medium")
|
53 |
+
|
54 |
+
demo = gr.Blocks()
|
55 |
+
|
56 |
+
with demo:
|
57 |
+
dummy = gr.Textbox(visible=False) # dummy for passing assignmentId
|
58 |
+
|
59 |
+
# We keep track of state as a JSON
|
60 |
+
state_dict = {
|
61 |
+
"conversation_id": uuid.uuid64(),
|
62 |
+
"assignmentId": "",
|
63 |
+
"cnt": 0, "data": [],
|
64 |
+
"past_user_inputs": [],
|
65 |
+
"generated_responses": [],
|
66 |
+
"response_1": "",
|
67 |
+
"response_2": "",
|
68 |
+
}
|
69 |
+
state = gr.JSON(state_dict, visible=False)
|
70 |
+
|
71 |
+
gr.Markdown("# RLHF Interface")
|
72 |
+
gr.Markdown("Choose the best model output")
|
73 |
+
|
74 |
+
state_display = gr.Markdown(f"Your messages: 0/{TOTAL_CNT}")
|
75 |
+
|
76 |
+
# Generate model prediction
|
77 |
+
# Default model: distilbert-base-uncased-finetuned-sst-2-english
|
78 |
+
def _predict(txt, state):
|
79 |
+
conversation_1 = Conversation(past_user_inputs=state["past_user_inputs"].copy(), generated_responses=state["generated_responses"].copy())
|
80 |
+
conversation_2 = Conversation(past_user_inputs=state["past_user_inputs"].copy(), generated_responses=state["generated_responses"].copy())
|
81 |
+
conversation_1.add_user_input(txt)
|
82 |
+
conversation_2.add_user_input(txt)
|
83 |
+
conversation_1 = chatbot(conversation_1, do_sample=True, seed=420)
|
84 |
+
conversation_2 = chatbot(conversation_2, do_sample=True, seed=69)
|
85 |
+
response_1 = conversation_1.generated_responses[-1]
|
86 |
+
response_2 = conversation_2.generated_responses[-1]
|
87 |
+
|
88 |
+
state["cnt"] += 1
|
89 |
+
|
90 |
+
new_state_md = f"Inputs remaining in HIT: {state['cnt']}/{TOTAL_CNT}"
|
91 |
+
|
92 |
+
state["data"].append({"cnt": state["cnt"], "text": txt, "response_1": response_1, "response_2": response_2})
|
93 |
+
state["past_user_inputs"].append(txt)
|
94 |
+
|
95 |
+
if state["cnt"] == TOTAL_CNT:
|
96 |
+
# Write the HIT data to our local dataset because the worker has
|
97 |
+
# submitted everything now.
|
98 |
+
with open(DATA_FILE, "a") as jsonlfile:
|
99 |
+
json_data_with_assignment_id =\
|
100 |
+
[json.dumps(dict({"assignmentId": state["assignmentId"]}, **datum)) for datum in state["data"]]
|
101 |
+
jsonlfile.write("\n".join(json_data_with_assignment_id) + "\n")
|
102 |
+
|
103 |
+
past_conversation_string = "<br />".join(["<br />".join(["😃: " + user_input, "🤖: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"] + [""])])
|
104 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True, choices=[response_1, response_2], interactive=True, value=response_1), gr.update(value=past_conversation_string), state, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), new_state_md, dummy
|
105 |
+
|
106 |
+
def _select_response(selected_response, state, dummy):
|
107 |
+
done = state["cnt"] == TOTAL_CNT
|
108 |
+
toggle_example_submit = gr.update(visible=not done)
|
109 |
+
state["generated_responses"].append(selected_response)
|
110 |
+
state["data"][-1]["selected_response"] = selected_response
|
111 |
+
past_conversation_string = "<br />".join(["<br />".join(["😃: " + user_input, "🤖: " + model_response]) for user_input, model_response in zip(state["past_user_inputs"], state["generated_responses"])])
|
112 |
+
query = parse_qs(dummy[1:])
|
113 |
+
if "assignmentId" in query and query["assignmentId"][0] != "ASSIGNMENT_ID_NOT_AVAILABLE":
|
114 |
+
# It seems that someone is using this app on mturk. We need to
|
115 |
+
# store the assignmentId in the state before submit_hit_button
|
116 |
+
# is clicked. We can do this here in _predict. We need to save the
|
117 |
+
# assignmentId so that the turker can get credit for their HIT.
|
118 |
+
state["assignmentId"] = query["assignmentId"][0]
|
119 |
+
toggle_final_submit = gr.update(visible=done)
|
120 |
+
toggle_final_submit_preview = gr.update(visible=False)
|
121 |
+
else:
|
122 |
+
toggle_final_submit_preview = gr.update(visible=done)
|
123 |
+
toggle_final_submit = gr.update(visible=False)
|
124 |
+
text_input = gr.update(visible=False) if done else gr.update(visible=True)
|
125 |
+
return gr.update(visible=False), gr.update(visible=True), text_input, gr.update(visible=False), state, gr.update(value=past_conversation_string), toggle_example_submit, toggle_final_submit, toggle_final_submit_preview,
|
126 |
+
|
127 |
+
# Input fields
|
128 |
+
past_conversation = gr.Markdown()
|
129 |
+
text_input = gr.Textbox(placeholder="Enter a statement", show_label=False)
|
130 |
+
select_response = gr.Radio(choices=[None, None], visible=False, label="Choose the best response")
|
131 |
+
select_response_button = gr.Button("Select Response", visible=False)
|
132 |
+
with gr.Column() as example_submit:
|
133 |
+
submit_ex_button = gr.Button("Submit")
|
134 |
+
with gr.Column(visible=False) as final_submit:
|
135 |
+
submit_hit_button = gr.Button("Submit HIT")
|
136 |
+
with gr.Column(visible=False) as final_submit_preview:
|
137 |
+
submit_hit_button_preview = gr.Button("Submit Work (preview mode; no mturk HIT credit, but your examples will still be stored)")
|
138 |
+
|
139 |
+
# Button event handlers
|
140 |
+
get_window_location_search_js = """
|
141 |
+
function(text_input, label_input, state, dummy) {
|
142 |
+
return [text_input, label_input, state, window.location.search];
|
143 |
+
}
|
144 |
+
"""
|
145 |
+
|
146 |
+
select_response_button.click(
|
147 |
+
_select_response,
|
148 |
+
inputs=[select_response, state, dummy],
|
149 |
+
outputs=[select_response, example_submit, text_input, select_response_button, state, past_conversation, example_submit, final_submit, final_submit_preview],
|
150 |
+
_js=get_window_location_search_js,
|
151 |
+
)
|
152 |
+
|
153 |
+
submit_ex_button.click(
|
154 |
+
_predict,
|
155 |
+
inputs=[text_input, state],
|
156 |
+
outputs=[text_input, select_response_button, select_response, past_conversation, state, example_submit, final_submit, final_submit_preview, state_display, dummy],
|
157 |
+
_js=get_window_location_search_js,
|
158 |
+
)
|
159 |
+
|
160 |
+
post_hit_js = """
|
161 |
+
function(state) {
|
162 |
+
// If there is an assignmentId, then the submitter is on mturk
|
163 |
+
// and has accepted the HIT. So, we need to submit their HIT.
|
164 |
+
const form = document.createElement('form');
|
165 |
+
form.action = 'https://workersandbox.mturk.com/mturk/externalSubmit';
|
166 |
+
form.method = 'post';
|
167 |
+
for (const key in state) {
|
168 |
+
const hiddenField = document.createElement('input');
|
169 |
+
hiddenField.type = 'hidden';
|
170 |
+
hiddenField.name = key;
|
171 |
+
hiddenField.value = state[key];
|
172 |
+
form.appendChild(hiddenField);
|
173 |
+
};
|
174 |
+
document.body.appendChild(form);
|
175 |
+
form.submit();
|
176 |
+
return state;
|
177 |
+
}
|
178 |
+
"""
|
179 |
+
|
180 |
+
submit_hit_button.click(
|
181 |
+
lambda state: state,
|
182 |
+
inputs=[state],
|
183 |
+
outputs=[state],
|
184 |
+
_js=post_hit_js,
|
185 |
+
)
|
186 |
+
|
187 |
+
refresh_app_js = """
|
188 |
+
function(state) {
|
189 |
+
// The following line here loads the app again so the user can
|
190 |
+
// enter in another preview-mode "HIT".
|
191 |
+
window.location.href = window.location.href;
|
192 |
+
return state;
|
193 |
+
}
|
194 |
+
"""
|
195 |
+
|
196 |
+
submit_hit_button_preview.click(
|
197 |
+
lambda state: state,
|
198 |
+
inputs=[state],
|
199 |
+
outputs=[state],
|
200 |
+
_js=refresh_app_js,
|
201 |
+
)
|
202 |
+
|
203 |
+
demo.launch()
|
collect.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Basic example for running MTurk data collection against a Space
|
2 |
+
# For more information see https://docs.aws.amazon.com/mturk/index.html
|
3 |
+
|
4 |
+
import boto3
|
5 |
+
from boto.mturk.question import ExternalQuestion
|
6 |
+
|
7 |
+
from config import MTURK_KEY, MTURK_SECRET
|
8 |
+
import argparse
|
9 |
+
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument("--mturk_region", default="us-east-1", help="The region for mturk (default: us-east-1)")
|
12 |
+
parser.add_argument("--space_name", default="Tristan/dadc", help="Name of the accompanying Hugging Face space (default: Tristan/dadc)")
|
13 |
+
parser.add_argument("--num_hits", type=int, default=5, help="The number of HITs.")
|
14 |
+
parser.add_argument("--num_assignments", type=int, default=1, help="The number of times that the HIT can be accepted and completed.")
|
15 |
+
parser.add_argument("--live_mode", action="store_true", help="""
|
16 |
+
Whether to run in live mode with real turkers. This will charge your account money.
|
17 |
+
If you don't use this flag, the HITs will be deployed on the sandbox version of mturk,
|
18 |
+
which will not charge your account money.
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
args = parser.parse_args()
|
23 |
+
|
24 |
+
MTURK_URL = f"https://mturk-requester{'' if args.live_mode else '-sandbox'}.{args.mturk_region}.amazonaws.com"
|
25 |
+
|
26 |
+
mturk = boto3.client(
|
27 |
+
"mturk",
|
28 |
+
aws_access_key_id=MTURK_KEY,
|
29 |
+
aws_secret_access_key=MTURK_SECRET,
|
30 |
+
region_name=args.mturk_region,
|
31 |
+
endpoint_url=MTURK_URL,
|
32 |
+
)
|
33 |
+
|
34 |
+
# This is the URL that makes the space embeddable in an mturk iframe
|
35 |
+
question = ExternalQuestion(f"https://hf.space/embed/{args.space_name}/+?__theme=light",
|
36 |
+
frame_height=600
|
37 |
+
)
|
38 |
+
|
39 |
+
for i in range(args.num_hits):
|
40 |
+
new_hit = mturk.create_hit(
|
41 |
+
Title="Beat the AI",
|
42 |
+
Description="Try to fool an AI by creating examples that it gets wrong",
|
43 |
+
Keywords="fool the model",
|
44 |
+
Reward="0.15",
|
45 |
+
MaxAssignments=args.num_assignments,
|
46 |
+
LifetimeInSeconds=172800,
|
47 |
+
AssignmentDurationInSeconds=600,
|
48 |
+
AutoApprovalDelayInSeconds=14400,
|
49 |
+
Question=question.get_as_xml(),
|
50 |
+
)
|
51 |
+
|
52 |
+
print(
|
53 |
+
f"HIT Group Link: https://worker{'' if args.live_mode else 'sandbox'}.mturk.com/mturk/preview?groupId="
|
54 |
+
+ new_hit["HIT"]["HITGroupId"]
|
55 |
+
)
|
config.py.example
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Fill in the information and rename this file config.py
|
2 |
+
# You can obtain the key and secret in the AWS Identity
|
3 |
+
# and Access Management (IAM) panel.
|
4 |
+
|
5 |
+
MTURK_KEY = ''
|
6 |
+
MTURK_SECRET = '
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
transformers==4.20.1
|
3 |
+
gradio==3.0.26
|
4 |
+
boto3==1.24.32
|
5 |
+
huggingface_hub==0.8.1
|
6 |
+
python-dotenv==0.20.0
|
utils.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
from huggingface_hub.repository import _lfs_log_progress
|
3 |
+
|
4 |
+
def force_git_push(
|
5 |
+
repo,
|
6 |
+
):
|
7 |
+
"""
|
8 |
+
force a simple git push
|
9 |
+
Blocking. Will return url to commit on remote
|
10 |
+
repo.
|
11 |
+
"""
|
12 |
+
command = "git push --force"
|
13 |
+
|
14 |
+
try:
|
15 |
+
with _lfs_log_progress():
|
16 |
+
process = subprocess.Popen(
|
17 |
+
command.split(),
|
18 |
+
stderr=subprocess.PIPE,
|
19 |
+
stdout=subprocess.PIPE,
|
20 |
+
encoding="utf-8",
|
21 |
+
cwd=repo.local_dir,
|
22 |
+
)
|
23 |
+
|
24 |
+
stdout, stderr = process.communicate()
|
25 |
+
return_code = process.poll()
|
26 |
+
process.kill()
|
27 |
+
|
28 |
+
if len(stderr):
|
29 |
+
print(stderr)
|
30 |
+
|
31 |
+
if return_code:
|
32 |
+
raise subprocess.CalledProcessError(
|
33 |
+
return_code, process.args, output=stdout, stderr=stderr
|
34 |
+
)
|
35 |
+
|
36 |
+
except subprocess.CalledProcessError as exc:
|
37 |
+
raise EnvironmentError(exc.stderr)
|
38 |
+
|
39 |
+
return repo.git_head_commit_url()
|