Spaces:
Runtime error
Runtime error
import face_recognition | |
import requests | |
import pandas as pd | |
from io import BytesIO | |
from tqdm import tqdm | |
def get_image(url: str): | |
response = requests.get(url) | |
response.raise_for_status() | |
img_file_object = BytesIO(response.content) | |
return face_recognition.load_image_file(img_file_object) | |
def get_embeddings(url: str): | |
try: | |
image = get_image(url) | |
return list(face_recognition.face_encodings(image, num_jitters=5, model="large")[0]) | |
except Exception as e: | |
print(e) | |
def process_all_images(input_file, output_file): | |
df = pd.read_csv(input_file)[["nconst","contentUrl"]] | |
try: | |
df_emb = pd.read_csv(output_file) | |
df = df[~df["contentUrl"].isin(df_emb["contentUrl"])] | |
except: | |
# file does not exists yet | |
df_emb = pd.DataFrame(columns=list(df.columns) + ["embeddings"]) | |
print(f"Start processing of {df.shape[0]} images") | |
df = df.sample(frac=1) # shuffle so you get some images for everybody while it's running | |
for i, row in tqdm(df.iterrows(), total=df.shape[0]): | |
embeddings = get_embeddings(row["contentUrl"]) | |
if embeddings: | |
new_row = row.copy() | |
new_row["embeddings"] = embeddings | |
df_emb = df_emb.append(new_row, ignore_index=True) | |
df_emb.to_csv(output_file, index=False) | |
return df_emb | |
def build_annoy_index(): | |
pass | |
if __name__ == "__main__": | |
output_file = "data/actors_embeddings.csv" | |
df_embeddings = process_all_images(input_file="data/actors_images.csv", output_file=output_file) |