nbeuchat commited on
Commit
0959acc
·
1 Parent(s): be3b0b4

fix input image size

Browse files
Files changed (2) hide show
  1. actors_matching/api.py +23 -10
  2. app.py +1 -1
actors_matching/api.py CHANGED
@@ -3,36 +3,49 @@ import json
3
  import annoy
4
  from typing import Tuple
5
 
6
- EMBEDDING_DIMENSION=128
7
  ANNOY_INDEX_FILE = "models/actors_annoy_index.ann"
8
  ANNOY_METADATA_FILE = "models/actors_annoy_metadata.json"
9
  ANNOY_MAPPING_FILE = "models/actors_mapping.json"
10
 
 
11
  def load_annoy_index(
12
- index_file = ANNOY_INDEX_FILE,
13
- metadata_file = ANNOY_METADATA_FILE,
14
- mapping_file = ANNOY_MAPPING_FILE
15
  ) -> Tuple[annoy.AnnoyIndex, dict]:
16
  """Load annoy index and associated mapping file"""
17
- with open(metadata_file) as f:
18
  annoy_index_metadata = json.load(f)
19
 
20
  annoy_index = annoy.AnnoyIndex(f=EMBEDDING_DIMENSION, **annoy_index_metadata)
21
  annoy_index.load(index_file)
22
 
23
- with open(mapping_file) as f:
24
  mapping = json.load(f)
25
  mapping = {int(k): v for k, v in mapping.items()}
26
  return annoy_index, mapping
27
 
28
- def analyze_image(image, annoy_index, n_matches: int = 1, num_jitters: int = 1, model: str = "large"):
 
 
 
29
  """Extract face location, embeddings, and top n_matches matches"""
30
- face_locations = face_recognition.face_locations(image)
31
- embeddings = face_recognition.face_encodings(image, num_jitters=num_jitters, model=model, known_face_locations=face_locations)
 
 
 
 
 
 
32
  matches = []
33
  distances = []
34
  for emb in embeddings:
35
  m, d = annoy_index.get_nns_by_vector(emb, n_matches, include_distances=True)
36
  matches.append(m)
37
  distances.append(d)
38
- return [dict(embeddings=e, matches=m, distances=d, face_locations=f) for e,m,d,f in zip(embeddings, matches, distances, face_locations)]
 
 
 
 
3
  import annoy
4
  from typing import Tuple
5
 
6
+ EMBEDDING_DIMENSION = 128
7
  ANNOY_INDEX_FILE = "models/actors_annoy_index.ann"
8
  ANNOY_METADATA_FILE = "models/actors_annoy_metadata.json"
9
  ANNOY_MAPPING_FILE = "models/actors_mapping.json"
10
 
11
+
12
  def load_annoy_index(
13
+ index_file=ANNOY_INDEX_FILE,
14
+ metadata_file=ANNOY_METADATA_FILE,
15
+ mapping_file=ANNOY_MAPPING_FILE,
16
  ) -> Tuple[annoy.AnnoyIndex, dict]:
17
  """Load annoy index and associated mapping file"""
18
+ with open(metadata_file) as f:
19
  annoy_index_metadata = json.load(f)
20
 
21
  annoy_index = annoy.AnnoyIndex(f=EMBEDDING_DIMENSION, **annoy_index_metadata)
22
  annoy_index.load(index_file)
23
 
24
+ with open(mapping_file) as f:
25
  mapping = json.load(f)
26
  mapping = {int(k): v for k, v in mapping.items()}
27
  return annoy_index, mapping
28
 
29
+
30
+ def analyze_image(
31
+ image, annoy_index, n_matches: int = 1, num_jitters: int = 1, model: str = "large"
32
+ ):
33
  """Extract face location, embeddings, and top n_matches matches"""
34
+ face_locations = face_recognition.face_locations(
35
+ image, number_of_times_to_upsample=1
36
+ )
37
+ if not face_locations:
38
+ face_locations = face_recognition.face_locations(image, model="cnn")
39
+ embeddings = face_recognition.face_encodings(
40
+ image, num_jitters=num_jitters, model=model, known_face_locations=face_locations
41
+ )
42
  matches = []
43
  distances = []
44
  for emb in embeddings:
45
  m, d = annoy_index.get_nns_by_vector(emb, n_matches, include_distances=True)
46
  matches.append(m)
47
  distances.append(d)
48
+ return [
49
+ dict(embeddings=e, matches=m, distances=d, face_locations=f)
50
+ for e, m, d, f in zip(embeddings, matches, distances, face_locations)
51
+ ]
app.py CHANGED
@@ -59,7 +59,7 @@ iface = gr.Interface(
59
  and limitations of the tool!""",
60
  article=Path("README.md").read_text(),
61
  inputs=[
62
- gr.inputs.Image(shape=(256, 256), label="Your image"),
63
  gr.inputs.Textbox(
64
  label="Who's that?", placeholder="Optional, you can leave this blank"
65
  ),
 
59
  and limitations of the tool!""",
60
  article=Path("README.md").read_text(),
61
  inputs=[
62
+ gr.inputs.Image(shape=None, label="Your image"),
63
  gr.inputs.Textbox(
64
  label="Who's that?", placeholder="Optional, you can leave this blank"
65
  ),