nbeuchat commited on
Commit
0cecccf
·
1 Parent(s): 6631114

fix actress selection when combining data

Browse files
Files changed (1) hide show
  1. combine_actors_data.py +2 -2
combine_actors_data.py CHANGED
@@ -15,7 +15,7 @@ def process_actors_data(keep_alive: bool = True):
15
  df = df[df["deathYear"].isna()]
16
  df = df[df.knownForTitles.apply(lambda x: len(x)) > 0]
17
  df = df.dropna(subset=["primaryProfession"])
18
- df = df[df.primaryProfession.apply(lambda x: "actor" in x.split(","))]
19
  df = df[df.knownForTitles != "\\N"]
20
  df = df.dropna(subset=["birthYear"])
21
  #df["knownForTitles"] = df["knownForTitles"].apply(lambda x: x.split(","))
@@ -23,7 +23,7 @@ def process_actors_data(keep_alive: bool = True):
23
  #dfat = df[["nconst", "knownForTitles"]].explode("knownForTitles")
24
  #dfat.columns = ["nconst", "tconst"]
25
  dfat = pd.read_csv("data/title.principals.tsv.gz", sep="\t")
26
- dfat = dfat[dfat.category.isin(["actor", "self"])][["tconst", "nconst"]]
27
 
28
 
29
  # Get data for the movies/shows the actors were known for
 
15
  df = df[df["deathYear"].isna()]
16
  df = df[df.knownForTitles.apply(lambda x: len(x)) > 0]
17
  df = df.dropna(subset=["primaryProfession"])
18
+ df = df[df.primaryProfession.apply(lambda x: any([p in {"actor", "actress"} for p in x.split(",")]))]
19
  df = df[df.knownForTitles != "\\N"]
20
  df = df.dropna(subset=["birthYear"])
21
  #df["knownForTitles"] = df["knownForTitles"].apply(lambda x: x.split(","))
 
23
  #dfat = df[["nconst", "knownForTitles"]].explode("knownForTitles")
24
  #dfat.columns = ["nconst", "tconst"]
25
  dfat = pd.read_csv("data/title.principals.tsv.gz", sep="\t")
26
+ dfat = dfat[dfat.category.isin(["actor", "actress", "self"])][["tconst", "nconst"]]
27
 
28
 
29
  # Get data for the movies/shows the actors were known for