import gradio as gr
import PIL
import numpy as np
import re
from actors_matching.api import analyze_image, load_annoy_index
from pathlib import Path
annoy_index, actors_mapping = load_annoy_index()
def get_image_html(actor: dict):
url = actor["url"]
name = actor["name"]
imdb_url = f"https://www.imdb.com/name/{actor['nconst']}/"
return f"""
"""
def no_faces_found_html():
return f"""No faces found in the picture
"""
def get_best_matches(image, n_matches: int):
return analyze_image(image, annoy_index=annoy_index, n_matches=n_matches)
def resize_image_keep_ratio(input_image: np.array, size: tuple):
resized_image = PIL.Image.fromarray(input_image)
resized_image.thumbnail(size, PIL.Image.ANTIALIAS)
return np.array(resized_image)
def get_article_text():
article = Path("README.md").read_text()
# Remove the HuggingFace Space app information from the README
article = re.sub(r"^---.+---\s+", "", article, flags=re.MULTILINE + re.DOTALL)
return article
def find_matching_actors(input_img, title, n_matches: int = 10):
resized_image = resize_image_keep_ratio(input_img, (512, 512))
best_matches_list = get_best_matches(resized_image, n_matches=n_matches)
# TODO: allow looping through characters
if best_matches_list:
best_matches = best_matches_list[0]
# TODO: Show how the initial image was parsed (ie: which person is displayed)
# Build htmls to display the result
output_htmls = []
for match in best_matches["matches"]:
actor = actors_mapping[match]
output_htmls.append(get_image_html(actor))
return output_htmls
# No matches
return [no_faces_found_html()]
iface = gr.Interface(
find_matching_actors,
title="Which actor or actress looks like you?",
description="""Who is the best person to play a movie about you? Upload a picture and find out!
Or maybe you'd like to know who would best interpret your favorite historical character?
Give it a shot or try one of the sample images below.
Built with ❤️ using great open-source libraries such as dlib, face_recognition and Annoy.
Please read below for more information on biases
and limitations of the tool!""",
article=get_article_text(),
inputs=[
gr.inputs.Image(shape=None, label="Your image"),
gr.inputs.Textbox(
label="Who's that?", placeholder="Optional, you can leave this blank"
),
# gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="Number of matches"),
],
outputs=gr.outputs.Carousel(gr.outputs.HTML(), label="Matching actors & actresses"),
examples=[
["images/example_rb_ginsburg.jpg", "RB Ginsburg in 1977"],
[
"images/example_hannibal_barca.jpg",
"Hannibal (the one with the elephants...)",
],
["images/example_frederick_douglass.jpg", "Frederik Douglass"],
["images/example_leonardo_davinci.jpg", "Leonoardo da Vinci"],
["images/example_joan_of_arc.jpg", "Jeanne d'Arc"],
["images/example_sun_tzu.jpg", "Sun Tzu"],
],
)
iface.launch()