Spaces:
Sleeping
Sleeping
File size: 20,672 Bytes
cdced10 5f6a009 cdced10 0bc8dab cdced10 ee49a0e cdced10 c231f46 cdced10 6565ba7 cdced10 6565ba7 cdced10 6565ba7 cdced10 0bc8dab d647316 0bc8dab bd8a308 0bc8dab bd8a308 0bc8dab b94c6e2 77a72db b94c6e2 77a72db bd8a308 77a72db b94c6e2 77a72db 256dcea 77a72db b94c6e2 77a72db bd8a308 cdced10 d647316 cdced10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import sys
import nltk
from nltk.corpus import stopwords
from nltk import tokenize
STOPWORDS = set(stopwords.words('english'))
import string
PUNCTUATION = set(char for char in string.punctuation)
import csv
import spacy
import re
import torch
from transformers import BertConfig, AutoModelForTokenClassification, BertTokenizer, pipeline
import numpy as np
import pandas as pd
import requests
import xml.etree.ElementTree as ET
import classify_abs
import json
import codecs
from unidecode import unidecode
from collections import OrderedDict
import streamlit as st
from typing import (
Dict,
List,
Tuple,
Set,
Optional,
Any,
Union,
)
## Section: Dictionary Look-up for Disease Labeling
# This generates a dictionary of all GARD disease names. It is a dependency for get_diseases, autosearch, and all higher level functions that utilize those functions.
# GARD_dict, max_length = load_GARD_diseases()
def load_GARD_diseases() -> Tuple[Dict[str,str], int]:
diseases = json.load(codecs.open('gard-id-name-synonyms.json', 'r', 'utf-8-sig'))
#keys are going to be disease names, values are going to be the GARD ID, set up this way bc dictionaries are faster lookup than lists
GARD_dict = {}
#Find out what the length of the longest disease name sequence is, of all names and synonyms. This is used by get_diseases
max_length = -1
for entry in diseases:
if entry['name'] not in GARD_dict.keys():
s = entry['name'].lower().strip()
if s not in STOPWORDS and len(s)>5:
GARD_dict[s] = entry['gard_id']
#compare length
l = len(s.split())
if l>max_length:
max_length = l
if entry['synonyms']:
for synonym in entry['synonyms']:
if synonym not in GARD_dict.keys():
s = synonym.lower().strip()
if s not in STOPWORDS and len(s)>5:
GARD_dict[s] = entry['gard_id']
#compare length
l = len(s.split())
if l>max_length:
max_length = l
return GARD_dict, max_length
#Works much faster if broken down into sentences. Resulted in poorer testing when incorporating GARD_firstwd_dict.
#compares every phrase in a sentence to see if it matches anything in the GARD dictionary of diseases.
def get_diseases(sentence:str, GARD_dict:Dict[str,str], max_length:int) -> Tuple[List[str], List[str]]:
tokens = [s.lower().strip() for s in nltk.word_tokenize(sentence)]
diseases = []
ids = []
i=0
#Iterates through every word, builds string that is max_length or less to compare.
while i <len(tokens):
#Find out the length of the comparison string, either max_length or less. This brings algorithm from O(n^2) to O(n) time
compare_length = min(len(tokens)-i, max_length)
#Compares longest sequences first and goes down until there is a match
#print('(start compare_length)',compare_length)
while compare_length>0:
s = ' '.join(tokens[i:i+compare_length])
if s.lower() in GARD_dict.keys():
diseases.append(s)
ids.append(GARD_dict[s.lower()])
#Need to skip over the next few indexes
i+=compare_length-1
break
else:
compare_length-=1
i+=1
return diseases,ids
## Section: Prepare ML/DL Models
# This fuction prepares the model. Should call before running in notebook. -- The [Any] Type is a Huggingface Pipeline variable
# Default with typing from here: https://stackoverflow.com/questions/38727520/how-do-i-add-default-parameters-to-functions-when-using-type-hinting
def init_NER_pipeline(name_or_path_to_model_folder:str = "ncats/EpiExtract4GARD-v2") -> Tuple[Any, Set[str]]: #NER_pipeline, entities = init_NER_pipeline()
tokenizer = BertTokenizer.from_pretrained(name_or_path_to_model_folder)
custommodel = AutoModelForTokenClassification.from_pretrained(name_or_path_to_model_folder)
customNER = pipeline('ner', custommodel, tokenizer=tokenizer, aggregation_strategy='simple')
config = BertConfig.from_pretrained(name_or_path_to_model_folder)
labels = {re.sub(".-","",label) for label in config.label2id.keys() if label != "O"}
return customNER, labels
## Section: Information Acquisition
#moved PMID_getAb and search_getAbs to classify_abs.py
## Section: Information Extraction
#Preprocessing function, turns abstracts into sentences
def str2sents(string:str) -> List[str]:
superscripts = re.findall('<sup>.</sup>', string)
for i in range(len(superscripts)):
string = re.sub('<sup>.</sup>', '^'+superscripts[i][5], string)
string = re.sub('<.{1,4}>', ' ', string)
string = re.sub(" *", " " , string)
string = re.sub("^ ", "" , string)
string = re.sub("$", "" , string)
string = re.sub(" ", " " , string)
string = re.sub("™", "" , string)
string = re.sub("®", "" , string)
string = re.sub("•", "" , string)
string = re.sub("…", "" , string)
string = re.sub("♀", "female" , string)
string = re.sub("♂", "male" , string)
string = unidecode(string)
string=string.strip()
sentences = tokenize.sent_tokenize(string)
return sentences
# Input: Sentences & Model Outputs
# Output: Dictionary with all entity types (dynamic to fit multiple models)
# model_outputs is list of NER_pipeline outputs
# labels are a set of all the possible entities (not including "O"). This is a misnomer. Was originally named "entities" but changed to not get confused with other code
def parse_info(sentences:List[str], model_outputs:List[List[Union[Dict[str,str],None]]], labels:Set, extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int) -> Dict[str,Union[List[str],None]]:
#do not use dict.fromkeys(labels,set()) as the value is a single instance which all keys point to.
#The value is therefore effectively immutable.
#See: https://docs.python.org/3/library/stdtypes.html?highlight=dict%20fromkeys#dict.fromkeys
output_dict = {label:[] for label in labels}
for output in model_outputs:
#This abstracts the labels so that models with different types and numbers of labels can be used.
for label in labels:
#This sub removes the ## which denotes that the token is not a the beginning of a word
output_dict[label]+=[re.sub('##','',entity_dict['word']) for entity_dict in output if entity_dict['entity_group'] ==label]
if 'DIS' not in output_dict.keys() and extract_diseases:
output_dict['DIS'] = []
output_dict['IDS'] = []
for sentence in sentences:
diseases,ids = get_diseases(sentence, GARD_dict, max_length)
output_dict['DIS']+=diseases
output_dict['IDS']+=ids
#Clean up Output Dict
for entity, output in output_dict.items():
if not output:
output_dict[entity] = None
else:
#remove duplicates from list but keep ordering instead of using sets
output = list(OrderedDict.fromkeys(output))
output_dict[entity] = output
if output_dict['EPI'] and (output_dict['STAT'] or output_dict['LOC'] or output_dict['DATE']):
return output_dict
#These are the main three main functions that can be called in a noteboook.
#Extracts Disease GARD ID, Disease Name, Location, Epidemiologic Identifier, Epidemiologic Statistic, etc. given a PubMed ID
#Dynamic dictionary output to fit multiple models
def PMID_extraction(pmid:Union[str,int], NER_pipeline:Any, labels:Union[Set[str],List[str]], GARD_dict:Dict[str,str], max_length:int) -> Dict[str,Union[str,List[str],None]]: #extraction = PMID_extraction(pmid, NER_pipeline, labels, GARD_dict, max_length)
text = classify_abs.PMID_getAb(pmid)
if len(text)>5:
sentences = str2sents(text)
model_outputs = [NER_pipeline(sent) for sent in sentences]
output_dict = parse_info(sentences, model_outputs, labels, GARD_dict, max_length)
output_dict['ABSTRACT'] = text
return output_dict
else:
out = ['ABSTRACT']
out+=list(labels)
output_dict =dict.fromkeys(out,"N/A")
output_dict['ABSTRACT'] = '*ABSTRACT NOT FOUND*'
return output_dict
#Can search by 7-digit GARD_ID, 12-digit "GARD:{GARD_ID}", matched search term, or arbitrary search term
#Returns list of terms to search by
# search_term_list = autosearch(search_term, GARD_dict)
def autosearch(searchterm:Union[str,int], GARD_dict:Dict[str,str], matching=2) -> List[str]:
#comparisons below only handly strings, allows int input
if type(searchterm) is not str:
searchterm = str(searchterm)
#for the disease names to match
searchterm = searchterm.lower()
while matching>=1:
#search in form of 'GARD:0000001'
if 'gard:' in searchterm and len(searchterm)==12:
searchterm = searchterm.replace('gard:','GARD:')
l = [k for k,v in GARD_dict.items() if v==searchterm]
l.sort(reverse=True, key=lambda x:len(x))
if len(l)>0:
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
#can take int or str of digits of variable input
#search in form of 777 or '777' or '00777' or '0000777'
elif searchterm[0].isdigit() and searchterm[-1].isdigit():
if len(searchterm)>7:
raise ValueError('GARD ID IS NOT VALID. RE-ENTER SEARCH TERM')
searchterm = 'GARD:'+'0'*(7-len(str(searchterm)))+str(searchterm)
l = [k for k,v in GARD_dict.items() if v==searchterm]
l.sort(reverse=True, key=lambda x:len(x))
if len(l)>0:
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
#search in form of 'mackay shek carr syndrome' and returns all synonyms ('retinal degeneration with nanophthalmos, cystic macular degeneration, and angle closure glaucoma', 'retinal degeneration, nanophthalmos, glaucoma', 'mackay shek carr syndrome')
#considers the GARD ID as the lemma, and the search term as one form. maps the form to the lemma and then uses that lemma to find all related forms in the GARD dict.
elif searchterm in GARD_dict.keys():
l = [k for k,v in GARD_dict.items() if v==GARD_dict[searchterm]]
l.sort(reverse=True, key=lambda x:len(x))
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
else:
#This can be replaced with some other common error in user input that is easily fixed
searchterm = searchterm.replace(' ','-')
return autosearch(searchterm, GARD_dict, matching-1)
print("SEARCH TERM DID NOT MATCH TO GARD DICTIONARY. SEARCHING BY USER INPUT")
return [searchterm]
#This ensures that there is a standardized ordering of df columns while ensuring dynamics with multiple models. This is used by search_term_extraction.
def order_labels(entity_classes:Union[Set[str],List[str]]) -> List[str]:
ordered_labels = []
label_order = ['DIS','ABRV','EPI','STAT','LOC','DATE','SEX','ETHN']
ordered_labels = [label for label in label_order if label in entity_classes]
#This adds any extra entities (from yet-to-be-created models) to the end of the ordered list of labels
for entity in entity_classes:
if entity not in label_order:
ordered_labels.append(entity)
return ordered_labels
#Given a search term and max results to return, this will acquire PubMed IDs and Title+Abstracts and Classify them as epidemiological.
#It then extracts Epidemiologic Information[Disease GARD ID, Disease Name, Location, Epidemiologic Identifier, Epidemiologic Statistic] for each abstract
# results = search_term_extraction(search_term, maxResults, filering, NER_pipeline, labels, extract_diseases, GARD_dict, max_length, classify_model_vars)
#Returns a Pandas dataframe
def search_term_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], #for biobert extraction
extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int, #for disease extraction
classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Any: #for classification
#Format of Output
ordered_labels = order_labels(entity_classes)
if extract_diseases:
columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi','IDS','DIS']+ordered_labels
else:
columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi']+ordered_labels
results = pd.DataFrame(columns=columns)
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = autosearch(search_term, GARD_dict)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = classify_abs.search_getAbs(search_term_list, maxResults,filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = classify_abs.getTextPredictions(abstract, classify_model_vars)
if isEpi:
#Preprocessing Functions for Extraction
sentences = str2sents(abstract)
model_outputs = [NER_pipeline(sent) for sent in sentences]
extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi})
#Slow dataframe update
results = results.append(extraction, ignore_index=True)
print(len(results),'abstracts classified as epidemiological.')
return results.sort_values('EPI_PROB', ascending=False)
#Returns a Pandas dataframe
def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], #for biobert extraction
extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int, #for disease extraction
classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Any: #for classification
#Format of Output
ordered_labels = order_labels(entity_classes)
if extract_diseases:
columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi','IDS','DIS']+ordered_labels
else:
columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi']+ordered_labels
results = pd.DataFrame(columns=columns)
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = autosearch(search_term, GARD_dict)
if len(search_term_list)>1:
st.write("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: "+ str(search_term_list))
else:
st.write("SEARCHING FOR: "+ str(search_term_list))
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs, sankey_initial = classify_abs.streamlit_getAbs(search_term_list, maxResults, filtering)
if len(pmid_abs)==0:
st.error('No results were gathered. Enter a new search term.')
else:
gathered, relevant = sankey_initial
epidemiologic = 0
i = 0
my_bar = st.progress(i)
percent_at_step = 100/len(pmid_abs)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = classify_abs.getTextPredictions(abstract, classify_model_vars)
if isEpi:
#Preprocessing Functions for Extraction
sentences = str2sents(abstract)
model_outputs = [NER_pipeline(sent) for sent in sentences]
extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'PROB_OF_EPI':epi_prob, 'IsEpi':isEpi})
#Slow dataframe update
results = results.append(extraction, ignore_index=True)
epidemiologic+=1
i+=1
my_bar.progress(min(round(i*percent_at_step/100,1),1.0))
sankey_data = (gathered, relevant,epidemiologic)
st.write(len(results),'abstracts classified as epidemiological.')
return results.sort_values('PROB_OF_EPI', ascending=False), sankey_data
#Identical to search_term_extraction, except it returns a JSON object instead of a df
def API_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], #for biobert extraction
extract_diseases:bool, GARD_dict:Dict[str,str], max_length:int, #for disease extraction
classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Any: #for classification
#Format of Output
ordered_labels = order_labels(entity_classes)
if extract_diseases:
json_output = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi','IDS','DIS']+ordered_labels
else:
json_output = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi']+ordered_labels
results = {'entries':[]}
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = autosearch(search_term, GARD_dict)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = classify_abs.search_getAbs(search_term_list, maxResults,filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = classify_abs.getTextPredictions(abstract, classify_model_vars)
if isEpi:
#Preprocessing Functions for Extraction
sentences = str2sents(abstract)
model_outputs = [NER_pipeline(sent) for sent in sentences]
extraction = parse_info(sentences, model_outputs, entity_classes, extract_diseases, GARD_dict, max_length)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob})
extraction = OrderedDict([(term, extraction[term]) for term in json_output])
results['entries'].append(extraction)
#sort
results['entries'].sort(reverse=True, key=lambda x:x['EPI_PROB'])
#float is not JSON serializable, so must convert all epi_probs to str
# This returns a map object, which is not JSON serializable
#results['entries'] = map(lambda entry:str(entry['EPI_PROB']),results['entries'])
for entry in results['entries']:
entry['EPI_PROB'] = str(entry['EPI_PROB'])
return json.dumps(results)
#Extract if you already have the text and you do not want epi_predictions (this makes things much faster)
#extraction = abstract_extraction(text, NER_pipeline, labels, GARD_dict, max_length)
def abstract_extraction(text:str, NER_pipeline:Any, entity_classes:Union[Set[str],List[str]], GARD_dict:Dict[str,str], max_length:int) -> Dict[str,Union[str,List[str],None]]:
if len(text)>5:
sentences = str2sents(text)
model_outputs = [NER_pipeline(sent) for sent in sentences]
output_dict = parse_info(sentences, model_outputs, entity_classes, GARD_dict, max_length)
output_dict['ABSTRACT'] = text
return output_dict
else:
out = ['ABSTRACT']
out+=list(entity_classes)
output_dict =dict.fromkeys(out,"N/A")
output_dict['ABSTRACT'] = '*ABSTRACT NOT FOUND*'
return output_dict
|