Spaces:
Running
Running
File size: 54,352 Bytes
5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 d5db2e6 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 223e572 5454234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
from typing import List, Dict, Union, Optional, Set, Tuple
# coding=utf-8
## PUBLIC DOMAIN NOTICE
## National Center for Advancing Translational Sciences
## This software/database is a "United States Government Work" under the terms of the United States Copyright Act. It was written as part of the author's official duties as United States Government employee and thus cannot be copyrighted. This software is freely available to the public for use. The National Center for Advancing Translational Science (NCATS) and the U.S. Government have not placed any restriction on its use or reproduction. Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software and data, the NCATS and the U.S. Government do not and cannot warrant the performance or results that may be obtained by using this software or data. The NCATS and the U.S. Government disclaim all warranties, express or implied, including warranties of performance, merchantability or fitness for any particular purpose. Please cite the authors in any work or product based on this material.
# Written by William Kariampuzha @ NIH/NCATS. Adapted from code written by Jennifer John, et al.
# The transformer-based pipeline code has its own copyright notice under the Apache License.
# The code was compiled into a single python file to make adding additional features and importing into other modules easy.
# Each section has its own import statements to facilitate clean code reuse, except for typing which applies to all.
## Section: GATHER ABSTRACTS FROM APIs
import requests
import xml.etree.ElementTree as ET
import nltk
nltk.data.path.extend(["/home/user/app/nltk_data","./nltk_data"])
from nltk.corpus import stopwords
STOPWORDS = set(stopwords.words('english'))
from nltk import tokenize as nltk_tokenize
#Retreives abstract and title (concatenated) from EBI API based on PubMed ID
def PMID_getAb(PMID:Union[int,str]) -> str:
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=EXT_ID:'+str(PMID)+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
titles = [title.text for title in root.iter('title')]
abstracts = [abstract.text for abstract in root.iter('abstractText')]
if len(abstracts) > 0 and len(abstracts[0])>5:
return titles[0]+' '+abstracts[0]
else:
return ''
## This is the main, most comprehensive search_term function, it can take in a search term or a list of search terms and output a dictionary of {pmids:abstracts}
## Gets results from searching through both PubMed and EBI search term APIs, also makes use of the EBI API for PMIDs.
## EBI API and PubMed API give different results
# This makes n+2 API calls where n<=maxResults, which is slow
# There is a way to optimize by gathering abstracts from the EBI API when also getting pmids but did not pursue due to time constraints
# Filtering can be
# 'strict' - must have some exact match to at least one of search terms/phrases in text)
# 'lenient' - part of the abstract must match at least one word in the search term phrases.
# 'none'
def search_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
#set of all pmids
pmids = set()
#dictionary {pmid:abstract}
pmid_abs = {}
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
## get pmid results from searching for disease name through PubMed API
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query#+"&retmax="+str(int(maxResults/len(searchterm_list)))
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('IdList'):
if len(pmids) >= maxResults:
break
pmidlist = [pmid.text for pmid in result.iter('Id')]
pmids.update(pmidlist)
## get results from searching for disease name through EBI API
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('result'):
if len(pmids) >= maxResults:
break
pmidlist = [pmid.text for pmid in result.iter('id')]
#can also gather abstract and title here but for some reason did not work as intended the first time. Optimize in future versions to reduce latency.
if len(pmidlist) > 0:
pmid = pmidlist[0]
if pmid[0].isdigit():
pmids.add(pmid)
#Construct sets for filtering (right before adding abstract to pmid_abs
# The purpose of this is to do a second check of the abstracts, filters out any abstracts unrelated to the search terms
#if filtering is 'lenient' or default
if filtering !='none' or filtering !='strict':
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
'''
# The above is equivalent to this but uses less memory and may be faster:
#create a single string of the terms within the searchterm_list
joined = ' '.join(searchterm_list)
#remove commas
comma_gone = re.sub(',','',joined)
#split the string into list of words and convert list into a Pythonic set
split = set(comma_gone.split())
#remove the STOPWORDS from the set of key words
key_words = split.difference(STOPWORDS)
#create a new set of the list members in searchterm_list
search_set = set(searchterm_list)
#join the two sets
terms = search_set.union(key_words)
#if any word(s) in the abstract intersect with any of these terms then the abstract is good to go.
'''
## get abstracts from EBI PMID API and output a dictionary
for pmid in pmids:
abstract = PMID_getAb(pmid)
if len(abstract)>5:
#do filtering here
if filtering == 'strict':
uncased_ab = abstract.lower()
#Reversing the list hopefully cuts down on the number of if statements bc the search terms are ordered longest to shortest and shorter terms are more likely to be in the abstract
for term in reversed(searchterm_list):
if term.lower() in uncased_ab:
pmid_abs[pmid] = abstract
break
elif filtering =='none':
pmid_abs[pmid] = abstract
#Default filtering is 'lenient'.
else:
#Else and if are separated for readability and to better understand logical flow.
if set(filter_terms).intersection(set(nltk_tokenize.word_tokenize(abstract))):
pmid_abs[pmid] = abstract
print('Found',len(pmids),'PMIDs. Gathered',len(pmid_abs),'Relevant Abstracts.')
return pmid_abs
#This is a streamlit version of search_getAbs. Refer to search_getAbs for documentation
import streamlit as st
def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
pmids = set()
pmid_abs = {}
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
percent_by_step = 1/maxResults
with st.spinner("Gathering PubMed IDs..."):
PMIDs_bar = st.progress(0)
for dz in searchterm_list:
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
#dividing by the len( of the search_ter
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query#+"&retmax="+str(int(maxResults/len(searchterm_list)))
r = requests.get(url)
root = ET.fromstring(r.content)
for result in root.iter('IdList'):
for pmid in result.iter('Id'):
if len(pmids) >= maxResults:
break
pmids.add(pmid.text)
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
for result in root.iter('result'):
if len(pmids) >= maxResults:
break
pmidlist = [pmid.text for pmid in result.iter('id')]
if len(pmidlist) > 0:
pmid = pmidlist[0]
if pmid[0].isdigit():
pmids.add(pmid)
PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
PMIDs_bar.empty()
with st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering..."):
abstracts_bar = st.progress(0)
percent_by_step = 1/maxResults
if filtering !='none' or filtering !='strict':
filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
for i, pmid in enumerate(pmids):
abstract = PMID_getAb(pmid)
if len(abstract)>5:
#do filtering here
if filtering == 'strict':
uncased_ab = abstract.lower()
#Reversing the list hopefully cuts down on the number of if statements bc the search terms are ordered longest to shortest and shorter terms are more likely to be in the abstract
for term in reversed(searchterm_list):
if term.lower() in uncased_ab:
pmid_abs[pmid] = abstract
break
elif filtering =='none':
pmid_abs[pmid] = abstract
#Default filtering is 'lenient'.
else:
#Else and if are separated for readability and to better understand logical flow.
if set(filter_terms).intersection(set(nltk_tokenize.word_tokenize(abstract))):
pmid_abs[pmid] = abstract
abstracts_bar.progress(min(round(i*percent_by_step,1),1.0))
abstracts_bar.empty()
found = len(pmids)
relevant = len(pmid_abs)
st.success('Found '+str(found)+' PMIDs. Gathered '+str(relevant)+' Relevant Abstracts. Classifying and extracting epidemiology information...')
return pmid_abs, (found, relevant)
## Section: LSTM RNN Epi Classification Model (EpiClassify4GARD)
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from tensorflow.keras.preprocessing.sequence import pad_sequences
import tensorflow as tf
import numpy as np
import spacy
class Classify_Pipeline:
def __init__(self,model:str='LSTM_RNN_Model'):
#Load spaCy models
self.nlp = spacy.load('en_core_web_lg')
self.nlpSci = spacy.load("en_ner_bc5cdr_md")
self.nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
# load the tokenizer
with open(model+'/tokenizer.pickle', 'rb') as handle:
import pickle
self.classify_tokenizer = pickle.load(handle)
# Defaults to load my_model_orphanet_final, the most up-to-date version of the classification model,
# but can also be run on any other tf.keras model
# load the model
self.classify_model = tf.keras.models.load_model(model)
# for preprocessing
from nltk.corpus import stopwords
self.STOPWORDS = set(stopwords.words('english'))
# Modes
self.max_length = 300
self.trunc_type = 'post'
self.padding_type = 'post'
def __str__(self) -> str:
return "Instantiation: epi_classify = Classify_Pipeline(path_to_model_folder)" +"\n Calling: prob, isEpi = epi_classify(text) \n PubMed ID Predictions: abstracts, prob, isEpi = epi_classify.getPMIDPredictions(pmid)"
def __call__(self, abstract:str) -> Tuple[float,bool]:
return self.getTextPredictions(abstract)
def getTextPredictions(self, abstract:str) -> Tuple[float,bool]:
if len(abstract)>5:
# remove stopwords
for word in self.STOPWORDS:
token = ' ' + word + ' '
abstract = abstract.replace(token, ' ')
abstract = abstract.replace(' ', ' ')
# preprocess abstract
abstract_standard = [self.standardizeAbstract(self.standardizeSciTerms(abstract))]
sequence = self.classify_tokenizer.texts_to_sequences(abstract_standard)
padded = pad_sequences(sequence, maxlen=self.max_length, padding=self.padding_type, truncating=self.trunc_type)
y_pred1 = self.classify_model.predict(padded) # generate prediction
y_pred = np.argmax(y_pred1, axis=1) # get binary prediction
prob = y_pred1[0][1]
if y_pred == 1:
isEpi = True
else:
isEpi = False
return prob, isEpi
else:
return 0.0, False
def getPMIDPredictions(self, pmid:Union[str,int]) -> Tuple[str,float,bool]:
abstract = PMID_getAb(pmid)
prob, isEpi = self.getTextPredictions(abstract)
return abstract, prob, isEpi
# Standardize the abstract by replacing all named entities with their entity label.
# Eg. 3 patients reported at a clinic in England --> CARDINAL patients reported at a clinic in GPE
# expects the spaCy model en_core_web_lg as input
def standardizeAbstract(self, abstract:str) -> str:
doc = self.nlp(abstract)
newAbstract = abstract
for e in reversed(doc.ents):
if e.label_ in {'PERCENT','CARDINAL','GPE','LOC','DATE','TIME','QUANTITY','ORDINAL'}:
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
return newAbstract
# Same as above but replaces biomedical named entities from scispaCy models
# Expects as input en_ner_bc5cdr_md and en_ner_bionlp13cg_md
def standardizeSciTerms(self, abstract:str) -> str:
doc = self.nlpSci(abstract)
newAbstract = abstract
for e in reversed(doc.ents):
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
doc = self.nlpSci2(newAbstract)
for e in reversed(doc.ents):
start = e.start_char
end = start + len(e.text)
newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
return newAbstract
## Section: GARD SEARCH
# can identify rare diseases in text using the GARD dictionary from neo4j
# and map a GARD ID, name, or synonym to all of the related synonyms for searching APIs
from nltk import tokenize as nltk_tokenize
class GARD_Search:
def __init__(self):
import json, codecs
#These are opened locally so that garbage collection removes them from memory
with codecs.open('gard-id-name-synonyms.json', 'r', 'utf-8-sig') as f:
diseases = json.load(f)
from nltk.corpus import stopwords
STOPWORDS = set(stopwords.words('english'))
#keys are going to be disease names, values are going to be the GARD ID, set up this way bc dictionaries are faster lookup than lists
GARD_dict = {}
#Find out what the length of the longest disease name sequence is, of all names and synonyms. This is used by get_diseases
max_length = -1
for entry in diseases:
if entry['name'] not in GARD_dict.keys():
s = entry['name'].lower().strip()
if s not in STOPWORDS and len(s)>5:
GARD_dict[s] = entry['gard_id']
#compare length
max_length = max(max_length,len(s.split()))
if entry['synonyms']:
for synonym in entry['synonyms']:
if synonym not in GARD_dict.keys():
s = synonym.lower().strip()
if s not in STOPWORDS and len(s)>5:
GARD_dict[s] = entry['gard_id']
max_length = max(max_length,len(s.split()))
self.GARD_dict = GARD_dict
self.max_length = max_length
def __str__(self) -> str:
return '''Instantiation: rd_identify = GARD_Search()
Calling: diseases, ids = rd_identify(text)
Autosearch: search_terms = rd_identify.autosearch(searchterm)
'''
def __call__(self, sentence:str) -> Tuple[List[str], List[str]]:
return self.get_diseases(sentence)
#Works much faster if broken down into sentences.
#compares every phrase in a sentence to see if it matches anything in the GARD dictionary of diseases.
def get_diseases(self, sentence:str) -> Tuple[List[str], List[str]]:
tokens = [s.lower().strip() for s in nltk_tokenize.word_tokenize(sentence)]
diseases = []
ids = []
i=0
#Iterates through every word, builds string that is max_length or less to compare.
while i <len(tokens):
#Find out the length of the comparison string, either max_length or less. This brings algorithm from O(n^2) to O(n) time
compare_length = min(len(tokens)-i, self.max_length)
#Compares longest sequences first and goes down until there is a match
#print('(start compare_length)',compare_length)
while compare_length>0:
s = ' '.join(tokens[i:i+compare_length])
if s.lower() in self.GARD_dict.keys():
diseases.append(s)
ids.append(self.GARD_dict[s.lower()])
#Need to skip over the next few indexes
i+=compare_length-1
break
else:
compare_length-=1
i+=1
return diseases,ids
#Can search by 7-digit GARD_ID, 12-digit "GARD:{GARD_ID}", matched search term, or arbitrary search term
#Returns list of terms to search by
# search_term_list = autosearch(search_term, GARD_dict)
def autosearch(self, searchterm:Union[str,int], matching=2) -> List[str]:
#comparisons below only handly strings, allows int input
if type(searchterm) is not str:
searchterm = str(searchterm)
#for the disease names to match
searchterm = searchterm.lower()
while matching>=1:
#search in form of 'GARD:0000001'
if 'gard:' in searchterm and len(searchterm)==12:
searchterm = searchterm.replace('gard:','GARD:')
l = [k for k,v in self.GARD_dict.items() if v==searchterm]
l.sort(reverse=True, key=lambda x:len(x))
if len(l)>0:
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
#can take int or str of digits of variable input
#search in form of 777 or '777' or '00777' or '0000777'
elif searchterm[0].isdigit() and searchterm[-1].isdigit():
if len(searchterm)>7:
raise ValueError('GARD ID IS NOT VALID. RE-ENTER SEARCH TERM')
searchterm = 'GARD:'+'0'*(7-len(str(searchterm)))+str(searchterm)
l = [k for k,v in self.GARD_dict.items() if v==searchterm]
l.sort(reverse=True, key=lambda x:len(x))
if len(l)>0:
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
#search in form of 'mackay shek carr syndrome' and returns all synonyms ('retinal degeneration with nanophthalmos, cystic macular degeneration, and angle closure glaucoma', 'retinal degeneration, nanophthalmos, glaucoma', 'mackay shek carr syndrome')
#considers the GARD ID as the lemma, and the search term as one form. maps the form to the lemma and then uses that lemma to find all related forms in the GARD dict.
elif searchterm in self.GARD_dict.keys():
l = [k for k,v in self.GARD_dict.items() if v==self.GARD_dict[searchterm]]
l.sort(reverse=True, key=lambda x:len(x))
print("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: ",l)
return l
else:
#This can be replaced with some other common error in user input that is easily fixed
searchterm = searchterm.replace('-',' ')
searchterm = searchterm.replace("'s","")
return self.autosearch(searchterm, matching-1)
print("SEARCH TERM DID NOT MATCH TO GARD DICTIONARY. SEARCHING BY USER INPUT")
return [searchterm]
## Section: BioBERT-based epidemiology NER Model (EpiExtract4GARD)
from nltk import tokenize as nltk_tokenize
from dataclasses import dataclass
from torch.utils.data.dataset import Dataset
from torch import nn
import numpy as np
from unidecode import unidecode
import re
from transformers import BertConfig, AutoModelForTokenClassification, BertTokenizer, Trainer
from unidecode import unidecode
from collections import OrderedDict
import json
import pandas as pd
from more_itertools import pairwise
# Subsection: Processing the abstracts into the correct data format
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
@dataclass
class NERInput:
"""
A single training/test example for token classification.
Args:
guid: Unique id for the example.
words: list. The words of the sequence.
labels: (Optional) list. The labels for each word of the sequence. This should be
specified for train and dev examples, but not for test examples.
"""
guid: str
words: List[str]
labels: List[str]
@dataclass
class InputFeatures:
"""
A single set of features of data.
Property names are the same names as the corresponding inputs to a model.
"""
input_ids: List[int]
attention_mask: List[int]
token_type_ids: Optional[List[int]] = None
label_ids: Optional[List[int]] = None
class NerDataset(Dataset):
features: List[InputFeatures]
pad_token_label_id: int = nn.CrossEntropyLoss().ignore_index
# Use cross entropy ignore_index as padding label id so that only
# real label ids contribute to the loss later.
def __init__(
self,
abstract: str,
tokenizer: BertTokenizer,
config: BertConfig,
):
# TODO clean up all this to leverage built-in features of tokenizers
ner_inputs = self.abstract2NERinputs(abstract)
self.features = self.convert_NERinputs_to_features(
ner_inputs,
config,
tokenizer,
cls_token_at_end=bool(config.model_type in ["xlnet"]),
# xlnet has a cls token at the end
cls_token=tokenizer.cls_token,
cls_token_segment_id=2 if config.model_type in ["xlnet"] else 0,
sep_token=tokenizer.sep_token,
sep_token_extra=False,
# roberta uses an extra separator b/w pairs of sentences, cf. github.com/pytorch/fairseq/commit/1684e166e3da03f5b600dbb7855cb98ddfcd0805
pad_on_left=bool(tokenizer.padding_side == "left"),
pad_token_segment_id=tokenizer.pad_token_type_id,
pad_token_label_id=self.pad_token_label_id,
)
self.ner_inputs = ner_inputs
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> InputFeatures:
return self.features[i]
#Preprocessing function, turns abstracts into sentences
def str2sents(self, string:str) -> List[str]:
superscripts = re.findall('<sup>.</sup>', string)
for i in range(len(superscripts)):
string = re.sub('<sup>.</sup>', '^'+superscripts[i][5], string)
string = re.sub("<.{1,4}>| *| ", " ", string)
string = re.sub("^ |$|™|®|•|…", "" , string)
string = re.sub("♀", "female" , string)
string = re.sub("♂", "male" , string)
string = unidecode(string)
string = string.strip()
sentences = nltk_tokenize.sent_tokenize(string)
return sentences
def abstract2NERinputs(self, abstract:str) -> List[NERInput]:
guid_index = 0
sentences = self.str2sents(abstract)
ner_inputs = [NERInput(str(guid),
nltk_tokenize.word_tokenize(sent),
["O" for i in range(len(nltk_tokenize.word_tokenize(sent)))])
for guid, sent in enumerate(sentences)]
return ner_inputs
def convert_NERinputs_to_features(self,
ner_inputs: List[NERInput],
model_config: BertConfig,
bert_tokenizer: BertTokenizer,
cls_token_at_end=False,
cls_token="[CLS]",
cls_token_segment_id=1,
sep_token="[SEP]",
sep_token_extra=False,
pad_on_left=False,
pad_token_segment_id=0,
pad_token_label_id=-100,
sequence_a_segment_id=0,
mask_padding_with_zero=True,
) -> List[InputFeatures]:
label2id = model_config.label2id
pad_token = model_config.pad_token_id
max_seq_length = model_config.max_position_embeddings
features = []
for (input_index, ner_input) in enumerate(ner_inputs):
tokens = []
label_ids = []
for word, label in zip(ner_input.words, ner_input.labels):
word_tokens = bert_tokenizer.tokenize(word)
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(word_tokens) > 0:
tokens.extend(word_tokens)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label2id[label]] + [pad_token_label_id] * (len(word_tokens) - 1))
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
special_tokens_count = bert_tokenizer.num_special_tokens_to_add()
if len(tokens) > max_seq_length - special_tokens_count:
tokens = tokens[: (max_seq_length - special_tokens_count)]
label_ids = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
segment_ids = [sequence_a_segment_id] * len(tokens)
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
tokens = [cls_token] + tokens
label_ids = [pad_token_label_id] + label_ids
segment_ids = [cls_token_segment_id] + segment_ids
input_ids = bert_tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids)
# Zero-pad up to the sequence length.
padding_length = max_seq_length - len(input_ids)
if pad_on_left:
input_ids = ([pad_token] * padding_length) + input_ids
input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids
label_ids = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
if "token_type_ids" not in bert_tokenizer.model_input_names:
segment_ids = None
features.append(
InputFeatures(
input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids, label_ids=label_ids
)
)
return features
# Subsection: Actual NER Pipeline
class NER_Pipeline:
def __init__(self, name_or_path_to_model_folder:str = "ncats/EpiExtract4GARD-v2"):
self.bert_tokenizer = BertTokenizer.from_pretrained(name_or_path_to_model_folder)
#no need for model variable because trainer wraps model and has more functions
#model = AutoModelForTokenClassification.from_pretrained(name_or_path_to_model_folder)
self.config = BertConfig.from_pretrained(name_or_path_to_model_folder)
self.labels = {re.sub(".-","",label) for label in self.config.label2id.keys() if label != "O"}
self.trainer = Trainer(model=AutoModelForTokenClassification.from_pretrained(name_or_path_to_model_folder))
def __str__(self):
return "Instantiation: pipe = NER_Pipeline(name_or_path_to_model_folder)"+"\n Calling: output_dict = pipe(text)"
#Custom pipeline by WKariampuzha @NCATS (not Huggingface/Google/NVIDIA copyright)
def __call__(self, text:str, rd_identify:Union[GARD_Search,None] = None):
output_dict = {label:[] for label in self.labels}
dataset = NerDataset(text, self.bert_tokenizer, self.config)
predictions, label_ids, _ = self.trainer.predict(dataset)
preds_list, _ = self.align_predictions(predictions, label_ids)
#dataset.ner_inputs.labels = preds_list
for ner_input, sent_pred_list in zip(dataset.ner_inputs, preds_list):
ner_input.labels = sent_pred_list
for sentence in dataset.ner_inputs:
entity = []
for idx, (current, nxt) in enumerate(pairwise(sentence.labels)):
#Main concatenation algorithm
'''
Accounts for all variations of
current = ['O','B-Tag`','I-Tag`']
nxt = ["O","B-Tag`","I-Tag`","B-Tag``","I-Tag``"]
and accounts for the final case
'''
if current != "O":
current_ib, current_tag = self.get_tag(current)
if nxt =="O":
#add word at idx
entity.append(sentence.words[idx])
output_dict[current_tag].append(' '.join(entity))
entity.clear()
else:
nxt_ib, nxt_tag = self.get_tag(nxt)
if nxt_tag == current_tag:
if nxt_ib =="B":
entity.append(sentence.words[idx])
output_dict[current_tag].append(' '.join(entity))
entity.clear()
#Continued "I"
else:
entity.append(sentence.words[idx])
else:
entity.append(sentence.words[idx])
output_dict[current_tag].append(' '.join(entity))
entity.clear()
#last case
if idx==len(sentence.labels)-2 and nxt!="O":
_, nxt_tag = self.get_tag(nxt)
entity.append(sentence.words[idx+1])
output_dict[nxt_tag].append(' '.join(entity))
entity.clear()
if 'DIS' not in output_dict.keys() and rd_identify:
output_dict['DIS'] = []
output_dict['IDS'] = []
for sentence in dataset.ner_inputs:
diseases,ids = rd_identify(' '.join(sentence.words))
output_dict['DIS']+=diseases
output_dict['IDS']+=ids
#Clean up Output Dict
for entity, output in output_dict.items():
if not output:
output_dict[entity] = None
elif entity !='STAT':
#remove duplicates from list but keep ordering instead of using sets
output = list(OrderedDict.fromkeys(output))
output_dict[entity] = output
if output_dict['EPI'] and output_dict['STAT']:
return output_dict
def align_predictions(self, predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
preds = np.argmax(predictions, axis=2)
batch_size, seq_len = preds.shape
out_label_list = [[] for _ in range(batch_size)]
preds_list = [[] for _ in range(batch_size)]
for i in range(batch_size):
for j in range(seq_len):
if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index:
out_label_list[i].append(self.config.id2label[label_ids[i][j]])
preds_list[i].append(self.config.id2label[preds[i][j]])
return preds_list, out_label_list
def get_tag(self, entity_name: str) -> Tuple[str, str]:
if entity_name.startswith("B-"):
bi = "B"
tag = entity_name[2:]
elif entity_name.startswith("I-"):
bi = "I"
tag = entity_name[2:]
else:
# It's not in B-, I- format
# Default to I- for continuation.
bi = "I"
tag = entity_name
return bi, tag
# Unattached function -- not a method
# move this to the NER_pipeline as a method??
#This ensures that there is a standardized ordering of df columns while ensuring dynamics with multiple models. This is used by search_term_extraction.
def order_labels(entity_classes:Union[Set[str],List[str]]) -> List[str]:
ordered_labels = []
label_order = ['DIS','ABRV','EPI','STAT','LOC','DATE','SEX','ETHN']
ordered_labels = [label for label in label_order if label in entity_classes]
#This adds any extra entities (from yet-to-be-created models) to the end of the ordered list of labels
for entity in entity_classes:
if entity not in label_order:
ordered_labels.append(entity)
return ordered_labels
## SECTION: PIPELINES
## This section combines all of the previous code into pipelines so that usage of these models and search functions are easy to implement in apps.
# Given a search term and max results to return, this will acquire PubMed IDs and Title+Abstracts and Classify them as epidemiological.
# results = search_term_extraction(search_term, maxResults, filering, GARD_dict, classify_model_vars)
#Returns a Pandas dataframe
def search_term_classification(search_term:Union[int,str], maxResults:int,
filtering:str, rd_identify:GARD_Search, #for abstract search & filtering
epi_classify:Classify_Pipeline) -> pd.DataFrame: #for classification
results = pd.DataFrame(columns=['PMID', 'ABSTRACT','EPI_PROB','IsEpi'])
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = rd_identify.autosearch(search_term)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = search_getAbs(search_term_list, maxResults, filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = epi_classify(abstract)
result = {'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi}
#Slow dataframe update
results = results.append(result, ignore_index=True)
return results.sort_values('EPI_PROB', ascending=False)
#Identical to search_term_classification, except it returns a JSON-compatible dictionary instead of a df
def API_search_classification(search_term:Union[int,str], maxResults:int,
filtering:str, GARD_Search:GARD_Search, #for abstract search & filtering
epi_classify:Classify_Pipeline) -> Dict[str,str]: #for classification
#Format of Output
results = {'entries':[]}
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
print('Inside `API_search_classification`. this is `search_term`:',search_term,type(search_term))
search_term_list = GARD_Search.autosearch(search_term)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = search_getAbs(search_term_list, maxResults, filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = epi_classify(abstract)
result = {'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi}
results['entries'].append(result)
#sort
results['entries'].sort(reverse=True, key=lambda x:x['EPI_PROB'])
# float is not JSON serializable, so must convert all epi_probs to str
# This returns a map object, which is not JSON serializable
# results['entries'] = map(lambda entry:str(entry['EPI_PROB']),results['entries'])
# so must convert floats to str the boring and slow way
for entry in results['entries']:
entry['EPI_PROB'] = str(entry['EPI_PROB'])
return results
def API_text_classification(text:str,epi_classify:Classify_Pipeline) -> Dict[str,str]:
epi_prob, isEpi = epi_classify(text)
return {'ABSTRACT':text, 'EPI_PROB':str(epi_prob), 'IsEpi':isEpi}
# Given a search term and max results to return, this will acquire PubMed IDs and Title+Abstracts and Classify them as epidemiological.
# It then extracts Epidemiologic Information[Disease GARD ID, Disease Name, Location, Epidemiologic Identifier, Epidemiologic Statistic] for each abstract
# results = search_term_extraction(search_term, maxResults, filering, NER_pipeline, extract_diseases, GARD_Search, Classify_Pipeline)
#Returns a Pandas dataframe
def search_term_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
epi_ner:NER_Pipeline, #for biobert extraction
GARD_Search:GARD_Search, extract_diseases:bool, #for disease extraction
epi_classify:Classify_Pipeline) -> pd.DataFrame: #for classification
#Format of Output
ordered_labels = order_labels(epi_ner.labels)
if extract_diseases:
columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi','IDS','DIS']+ordered_labels
else:
columns = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi']+ordered_labels
results = pd.DataFrame(columns=columns)
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = GARD_Search.autosearch(search_term)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = search_getAbs(search_term_list, maxResults, filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = epi_classify(abstract)
if isEpi:
if extract_diseases:
extraction = epi_ner(abstract, GARD_Search)
else:
extraction = epi_ner(abstract)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob, 'IsEpi':isEpi})
#Slow dataframe update
results = results.append(extraction, ignore_index=True)
print(len(results),'abstracts classified as epidemiological.')
return results.sort_values('EPI_PROB', ascending=False)
#Returns a Pandas dataframe
def streamlit_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
epi_ner:NER_Pipeline, #for biobert extraction
GARD_Search:GARD_Search, extract_diseases:bool, #for disease extraction
epi_classify:Classify_Pipeline) -> pd.DataFrame: #for classification
#Format of Output
ordered_labels = order_labels(epi_ner.labels)
if extract_diseases:
columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi','IDS','DIS']+ordered_labels
else:
columns = ['PMID', 'ABSTRACT','PROB_OF_EPI','IsEpi']+ordered_labels
results = pd.DataFrame(columns=columns)
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = GARD_Search.autosearch(search_term)
if len(search_term_list)>1:
st.write("SEARCH TERM MATCHED TO GARD DICTIONARY. SEARCHING FOR: "+ str(search_term_list))
else:
st.write("SEARCHING FOR: "+ str(search_term_list))
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs, sankey_initial = streamlit_getAbs(search_term_list, maxResults, filtering)
if len(pmid_abs)==0:
st.error('No results were gathered. Enter a new search term.')
return None, None, None
else:
found, relevant = sankey_initial
epidemiologic = 0
i = 0
my_bar = st.progress(i)
percent_at_step = 100/len(pmid_abs)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = epi_classify(abstract)
if isEpi:
if extract_diseases:
extraction = epi_ner(abstract, GARD_Search)
else:
extraction = epi_ner(abstract)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'PROB_OF_EPI':epi_prob, 'IsEpi':isEpi})
#Slow dataframe update
results = results.append(extraction, ignore_index=True)
epidemiologic+=1
i+=1
my_bar.progress(min(round(i*percent_at_step/100,1),1.0))
st.write(len(results),'abstracts classified as epidemiological.')
sankey_data = (found, relevant, epidemiologic)
#Export the name and GARD ID to the ap for better integration on page.
name = search_term_list[-1].capitalize()
if search_term_list[-1] in GARD_Search.GARD_dict.keys():
disease_gardID = (name, GARD_Search.GARD_dict[search_term_list[-1]])
else:
disease_gardID = (name, None)
return results.sort_values('PROB_OF_EPI', ascending=False), sankey_data, disease_gardID
#Identical to search_term_extraction, except it returns a JSON-compatible dictionary instead of a df
def API_search_extraction(search_term:Union[int,str], maxResults:int, filtering:str, #for abstract search
epi_ner:NER_Pipeline, #for biobert extraction
GARD_Search:GARD_Search, extract_diseases:bool, #for disease extraction
epi_classify:Classify_Pipeline) -> Dict[str,str]: #for classification
#Format of Output
ordered_labels = order_labels(epi_ner.labels)
if extract_diseases:
json_output = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi','IDS','DIS']+ordered_labels
else:
json_output = ['PMID', 'ABSTRACT','EPI_PROB','IsEpi']+ordered_labels
results = {'entries':[]}
##Check to see if search term maps to anything in the GARD dictionary, if so it pulls up all synonyms for the search
search_term_list = GARD_Search.autosearch(search_term)
#Gather title+abstracts into a dictionary {pmid:abstract}
pmid_abs = search_getAbs(search_term_list, maxResults, filtering)
for pmid, abstract in pmid_abs.items():
epi_prob, isEpi = epi_classify(abstract)
if isEpi:
if extract_diseases:
extraction = epi_ner(abstract, GARD_Search)
else:
extraction = epi_ner(abstract)
if extraction:
extraction.update({'PMID':pmid, 'ABSTRACT':abstract, 'EPI_PROB':epi_prob})
extraction = OrderedDict([(term, extraction[term]) for term in json_output if term in extraction.keys()])
results['entries'].append(extraction)
#sort
results['entries'].sort(reverse=True, key=lambda x:x['EPI_PROB'])
# float is not JSON serializable, so must convert all epi_probs to str
# This returns a map object, which is not JSON serializable
# results['entries'] = map(lambda entry:str(entry['EPI_PROB']),results['entries'])
for entry in results['entries']:
entry['EPI_PROB'] = str(entry['EPI_PROB'])
return results
#Identical to search_term_extraction, except it returns a JSON-compatible dictionary instead of a df
def API_text_extraction(text:str, #Text to be extracted
epi_ner:NER_Pipeline, #for biobert extraction
GARD_Search:GARD_Search, extract_diseases:bool, #for disease extraction
) -> Dict[str,str]:
#Format of Output
ordered_labels = order_labels(epi_ner.labels)
if extract_diseases:
json_output = ['ABSTRACT','IDS','DIS']+ordered_labels
else:
json_output = ['ABSTRACT']+ordered_labels
results = {'entries':[]}
#Do the extraction
if extract_diseases:
extraction = epi_ner(text, GARD_Search)
else:
extraction = epi_ner(text)
if extraction:
#Re-order the dictionary into desired JSON output
extraction = OrderedDict([(term, extraction[term]) for term in json_output if term in extraction.keys()])
results['entries'].append(extraction)
return results
def API_text_classification_extraction(text:str, #Text to be extracted
epi_ner:NER_Pipeline, #for biobert extraction
GARD_Search:GARD_Search, extract_diseases:bool, #for disease extraction
epi_classify:Classify_Pipeline) -> Dict[str,str]:
#Format of Output
ordered_labels = order_labels(epi_ner.labels)
if extract_diseases:
json_output = ['ABSTRACT','IsEpi','EPI_PROB','IDS','DIS']+ordered_labels
else:
json_output = ['ABSTRACT','IsEpi','EPI_PROB']+ordered_labels
#Do the extraction
if extract_diseases:
extraction = epi_ner(text, GARD_Search)
else:
extraction = epi_ner(text)
if extraction:
#Add the epidemiology probability and result
#Does not matter which order these are done in but doing classification after may save some time if there is no valid extraction
epi_prob, isEpi = epi_classify(text)
extraction.update({'EPI_PROB':str(epi_prob),'IsEpi':isEpi})
#Re-order the dictionary into desired JSON output
output = OrderedDict([(term, extraction[term]) for term in json_output if term in extraction.keys()])
return output
## Section: Deprecated Functions
import requests
import xml.etree.ElementTree as ET
def search_Pubmed_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('search_Pubmed_API is DEPRECATED. UTILIZE search_NCBI_API for NCBI ENTREZ API results. Utilize search_getAbs for most comprehensive results.')
return search_NCBI_API(searchterm_list, maxResults)
def search_NCBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('search_NCBI_API is DEPRECATED. Utilize search_getAbs for most comprehensive results.')
pmid_to_abs = {}
i = 0
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
# get results from searching for disease name through PubMed API
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('IdList'):
pmids = [pmid.text for pmid in result.iter('Id')]
if i >= maxResults:
break
for pmid in pmids:
if pmid not in pmid_to_abs.keys():
abstract = PMID_getAb(pmid)
if len(abstract)>5:
pmid_to_abs[pmid]=abstract
i+=1
return pmid_to_abs
def search_EBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}
print('DEPRECATED. Utilize search_getAbs for most comprehensive results.')
pmids_abs = {}
i = 0
#type validation, allows string or list input
if type(searchterm_list)!=list:
if type(searchterm_list)==str:
searchterm_list = [searchterm_list]
else:
searchterm_list = list(searchterm_list)
#gathers pmids into a set first
for dz in searchterm_list:
if i >= maxResults:
break
term = ''
dz_words = dz.split()
for word in dz_words:
term += word + '%20'
query = term[:-3]
url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
r = requests.get(url)
root = ET.fromstring(r.content)
# loop over resulting articles
for result in root.iter('result'):
if i >= maxResults:
break
pmids = [pmid.text for pmid in result.iter('id')]
if len(pmids) > 0:
pmid = pmids[0]
if pmid[0].isdigit():
abstracts = [abstract.text for abstract in result.iter('abstractText')]
titles = [title.text for title in result.iter('title')]
if len(abstracts) > 0:# and len(abstracts[0])>5:
pmids_abs[pmid] = titles[0]+' '+abstracts[0]
i+=1
return pmids_abs
|