File size: 17,895 Bytes
aa32937
 
 
 
 
 
 
 
 
 
 
 
c1347a0
aa32937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a38dc3
aa32937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5406d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e517955
ff3ac92
d5406d4
 
 
 
 
 
 
 
 
9d85d67
e8ec1ab
26da213
ff3ac92
9d85d67
 
 
 
 
 
aa32937
9d85d67
 
 
 
 
 
 
 
 
c058e52
9d85d67
 
 
 
 
 
 
 
 
 
 
 
 
c058e52
9d85d67
e517955
26da213
 
 
 
 
e517955
26da213
 
 
 
 
 
 
 
e517955
eaaa784
26da213
 
 
 
 
 
 
 
 
 
 
 
 
 
aa32937
ec290ed
aa32937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import argparse
import requests
import xml.etree.ElementTree as ET
import pickle
import re
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 
import tensorflow as tf
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import spacy
import numpy as np
import streamlit as st
from tensorflow.keras.preprocessing.sequence import pad_sequences
STOPWORDS = set(stopwords.words('english'))
max_length = 300
trunc_type = 'post'
padding_type = 'post'

from typing import (
    Dict,
    List,
    Tuple,
    Set,
    Optional,
    Any,
    Union,
)

# Standardize the abstract by replacing all named entities with their entity label.
# Eg. 3 patients reported at a clinic in England --> CARDINAL patients reported at a clinic in GPE
# expects the spaCy model en_core_web_lg as input
def standardizeAbstract(abstract:str, nlp:Any) -> str:
    doc = nlp(abstract)
    newAbstract = abstract
    for e in reversed(doc.ents):
        if e.label_ in {'PERCENT','CARDINAL','GPE','LOC','DATE','TIME','QUANTITY','ORDINAL'}:
            start = e.start_char
            end = start + len(e.text)
            newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
    return newAbstract

# Same as above but replaces biomedical named entities from scispaCy models
# Expects as input en_ner_bc5cdr_md and en_ner_bionlp13cg_md
def standardizeSciTerms(abstract:str, nlpSci:Any, nlpSci2:Any) -> str:
    doc = nlpSci(abstract)
    newAbstract = abstract
    for e in reversed(doc.ents):
        start = e.start_char
        end = start + len(e.text)
        newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
        
    doc = nlpSci2(newAbstract)
    for e in reversed(doc.ents):
        start = e.start_char
        end = start + len(e.text)
        newAbstract = newAbstract[:start] + e.label_ + newAbstract[end:]
    return newAbstract

# Prepare model
#nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer= init_classify_model()
def init_classify_model(model:str='LSTM_RNN_Model') -> Tuple[Any,Any,Any,Any,Any]:
    #Load spaCy models
    nlp = spacy.load('en_core_web_lg')
    nlpSci = spacy.load("en_ner_bc5cdr_md")
    nlpSci2 = spacy.load('en_ner_bionlp13cg_md')
    
    # load the tokenizer
    with open('tokenizer.pickle', 'rb') as handle:
        classify_tokenizer = pickle.load(handle)
    
    # load the model
    classify_model = tf.keras.models.load_model(model) 
    
    return (nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer)

#Gets abstract and title (concatenated) from EBI API
def PMID_getAb(PMID:Union[int,str]) -> str: 
    url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query=EXT_ID:'+str(PMID)+'&resulttype=core'
    r = requests.get(url)
    root = ET.fromstring(r.content)
    titles = [title.text for title in root.iter('title')]
    abstracts = [abstract.text for abstract in root.iter('abstractText')]
    if len(abstracts) > 0 and len(abstracts[0])>5:
        return titles[0]+' '+abstracts[0]
    else:
        return ''

def search_Pubmed_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts} 
    print('search_Pubmed_API is DEPRECATED. UTILIZE search_NCBI_API for NCBI ENTREZ API results. Utilize search_getAbs for most comprehensive results.')
    return search_NCBI_API(searchterm_list, maxResults)
    
## DEPRECATED, use search_getAbs for more comprehensive results
def search_NCBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts} 
    print('search_NCBI_API is DEPRECATED. Utilize search_getAbs for most comprehensive results.')
    pmid_to_abs = {}
    i = 0
    
    #type validation, allows string or list input
    if type(searchterm_list)!=list:
        if type(searchterm_list)==str:
            searchterm_list = [searchterm_list]
        else:
            searchterm_list = list(searchterm_list)
    
    #gathers pmids into a set first
    for dz in searchterm_list:
        # get results from searching for disease name through PubMed API
        term = ''
        dz_words = dz.split()
        for word in dz_words:
            term += word + '%20'
        query = term[:-3]
        url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
        r = requests.get(url)
        root = ET.fromstring(r.content)    

        # loop over resulting articles
        for result in root.iter('IdList'):
            pmids = [pmid.text for pmid in result.iter('Id')]
            if i >= maxResults:
                break
            for pmid in pmids:
                if pmid not in pmid_to_abs.keys():
                    abstract = PMID_getAb(pmid)
                    if len(abstract)>5:
                        pmid_to_abs[pmid]=abstract
                        i+=1
                    
    return pmid_to_abs

## DEPRECATED, use search_getAbs for more comprehensive results
# get results from searching for disease name through EBI API
def search_EBI_API(searchterm_list:Union[List[str],str], maxResults:int) -> Dict[str,str]: #returns a dictionary of {pmids:abstracts}    
    print('DEPRECATED. Utilize search_getAbs for most comprehensive results.')
    pmids_abs = {}
    i = 0
    
    #type validation, allows string or list input
    if type(searchterm_list)!=list:
        if type(searchterm_list)==str:
            searchterm_list = [searchterm_list]
        else:
            searchterm_list = list(searchterm_list)
    
    #gathers pmids into a set first
    for dz in searchterm_list:
        if i >= maxResults:
            break
        term = ''
        dz_words = dz.split()
        for word in dz_words:
            term += word + '%20'
        query = term[:-3]
        url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
        r = requests.get(url)
        root = ET.fromstring(r.content)

        # loop over resulting articles
        for result in root.iter('result'):
            if i >= maxResults:
                break
            pmids = [pmid.text for pmid in result.iter('id')]
            if len(pmids) > 0:
                pmid = pmids[0]
                if pmid[0].isdigit():
                    abstracts = [abstract.text for abstract in result.iter('abstractText')]
                    titles = [title.text for title in result.iter('title')]
                    if len(abstracts) > 0:# and len(abstracts[0])>5:
                        pmids_abs[pmid] = titles[0]+' '+abstracts[0]
                        i+=1
    
    return pmids_abs

## This is the main, most comprehensive search_term function, it can take in a search term or a list of search terms and output a dictionary of {pmids:abstracts}
## Gets results from searching through both PubMed and EBI search term APIs, also makes use of the EBI API for PMIDs. 
## EBI API and PubMed API give different results
# This makes n+2 API calls where n<=maxResults, which is slow 
# There is a way to optimize by gathering abstracts from the EBI API when also getting pmids but did not pursue due to time constraints
# Filtering can be 
#   'strict' - must have some exact match to at leastone of search terms/phrases in text)
#   'lenient' - part of the abstract must match at least one word in the search term phrases.
#   'none'
def search_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
    #set of all pmids
    pmids = set()
    
    #dictionary {pmid:abstract}
    pmid_abs = {}
    
    #type validation, allows string or list input
    if type(searchterm_list)!=list:
        if type(searchterm_list)==str:
            searchterm_list = [searchterm_list]
        else:
            searchterm_list = list(searchterm_list)
    
    #gathers pmids into a set first
    for dz in searchterm_list:
        term = ''
        dz_words = dz.split()
        for word in dz_words:
            term += word + '%20'
        query = term[:-3]

        ## get pmid results from searching for disease name through PubMed API
        url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
        r = requests.get(url)
        root = ET.fromstring(r.content)

        # loop over resulting articles
        for result in root.iter('IdList'):
            if len(pmids) >= maxResults:
                break
            pmidlist = [pmid.text for pmid in result.iter('Id')]
            pmids.update(pmidlist)

        ## get results from searching for disease name through EBI API
        url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
        r = requests.get(url)
        root = ET.fromstring(r.content)

        # loop over resulting articles
        for result in root.iter('result'):
            if len(pmids) >= maxResults:
                break
            pmidlist = [pmid.text for pmid in result.iter('id')]
            #can also gather abstract and title here but for some reason did not work as intended the first time. Optimize in future versions to reduce latency.
            if len(pmidlist) > 0:
                pmid = pmidlist[0]
                if pmid[0].isdigit():
                    pmids.add(pmid)
    
    #Construct sets for filtering (right before adding abstract to pmid_abs
    # The purpose of this is to do a second check of the abstracts, filters out any abstracts unrelated to the search terms
    #if filtering is 'lenient' or default
    if filtering !='none' or filtering !='strict':
        filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
        '''
        # The above is equivalent to this but uses less memory and may be faster:
        #create a single string of the terms within the searchterm_list
        joined = ' '.join(searchterm_list)
        #remove commas
        comma_gone = re.sub(',','',joined)
        #split the string into list of words and convert list into a Pythonic set
        split = set(comma_gone.split())
        #remove the STOPWORDS from the set of key words
        key_words = split.difference(STOPWORDS)
        #create a new set of the list members in searchterm_list
        search_set = set(searchterm_list)
        #join the two sets
        terms = search_set.union(key_words)
        #if any word(s) in the abstract intersect with any of these terms then the abstract is good to go.
        '''
    
    ## get abstracts from EBI PMID API and output a dictionary
    for pmid in pmids:
        abstract = PMID_getAb(pmid)
        if len(abstract)>5:
            #do filtering here
            if filtering == 'strict':
                uncased_ab = abstract.lower()
                for term in searchterm_list:
                    if term.lower() in uncased_ab:
                        pmid_abs[pmid] = abstract
                        break
            elif filtering =='none':
                pmid_abs[pmid] = abstract
            
            #Default filtering is 'lenient'.
            else:
                #Else and if are separated for readability and to better understand logical flow.
                if set(filter_terms).intersection(set(word_tokenize(abstract))):
                    pmid_abs[pmid] = abstract
                
                    
    print('Found',len(pmids),'PMIDs. Gathered',len(pmid_abs),'Relevant Abstracts.')
    
    return pmid_abs

#This is a streamlit version of search_getAbs. Refer to search_getAbs for documentation
def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:int, filtering:str) -> Dict[str,str]:
    pmids = set()
    
    pmid_abs = {}
    
    if type(searchterm_list)!=list:
        if type(searchterm_list)==str:
            searchterm_list = [searchterm_list]
        else:
            searchterm_list = list(searchterm_list)
    #maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
    percent_by_step = 1/(maxResults*1.05) 
    API_Loading = st.spinner("Gathering PubMed IDs...")
    PMIDs_bar = st.progress(0)
    for dz in searchterm_list:
        term = ''
        dz_words = dz.split()
        for word in dz_words:
            term += word + '%20'
        query = term[:-3]

        url = 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term='+query
        r = requests.get(url)
        root = ET.fromstring(r.content)

        for result in root.iter('IdList'):
            if len(pmids) >= maxResults:
                break
            pmidlist = [pmid.text for pmid in result.iter('Id')]
            pmids.update(pmidlist)
            PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))

        url = 'https://www.ebi.ac.uk/europepmc/webservices/rest/search?query='+query+'&resulttype=core'
        r = requests.get(url)
        root = ET.fromstring(r.content)

        for result in root.iter('result'):
            if len(pmids) >= maxResults:
                break
            pmidlist = [pmid.text for pmid in result.iter('id')]
            if len(pmidlist) > 0:
                pmid = pmidlist[0]
                if pmid[0].isdigit():
                    pmids.add(pmid)
                    PMIDs_bar.progress(min(round(len(pmids)*percent_by_step,1),1.0))
    PMIDs_bar.empty()
    
    API_Loading = st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering...")
    abstracts_bar = st.progress(0)
    percent_by_step = 1/(maxResults)
    if filtering !='none' or filtering !='strict':
        filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))

    for pmid in pmids:
        abstract = PMID_getAb(pmid)
        if len(abstract)>5:
            #do filtering here
            if filtering == 'strict':
                uncased_ab = abstract.lower()
                for term in searchterm_list:
                    if term.lower() in uncased_ab:
                        pmid_abs[pmid] = abstract
                        abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
                        break
            elif filtering =='none':
                pmid_abs[pmid] = abstract
                abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
            
            #Default filtering is 'lenient'.
            else:
                #Else and if are separated for readability and to better understand logical flow.
                if set(filter_terms).intersection(set(word_tokenize(abstract))):
                    pmid_abs[pmid] = abstract
                    abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
    abstracts_bar.empty()
    API_Loading.empty()
    st.success('Found '+str(len(pmids))+' PMIDs. Gathered '+str(len(pmid_abs))+' Relevant Abstracts. Classifying and extracting epidemiology information...')
    
    return pmid_abs, (len(pmids),len(pmid_abs))

# Generate predictions for a PubMed Id
# nlp: en_core_web_lg
# nlpSci: en_ner_bc5cdr_md
# nlpSci2: en_ner_bionlp13cg_md
# Defaults to load my_model_orphanet_final, the most up-to-date version of the classification model,
# but can also be run on any other tf.keras model
#This was originally getPredictions
def getPMIDPredictions(pmid:Union[str,int], classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[str,float,bool]:
    nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars
    abstract = PMID_getAb(pmid)
    
    if len(abstract)>5:
        # remove stopwords
        for word in STOPWORDS:
            token = ' ' + word + ' '
            abstract = abstract.replace(token, ' ')
            abstract = abstract.replace(' ', ' ')

        # preprocess abstract
        abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)]
        sequence = classify_tokenizer.texts_to_sequences(abstract_standard)
        padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)

        y_pred1 = classify_model.predict(padded) # generate prediction
        y_pred = np.argmax(y_pred1, axis=1) # get binary prediction

        prob = y_pred1[0][1]
        if y_pred == 1:
            isEpi = True
        else:
            isEpi = False

        return abstract, prob, isEpi
    
    else:
        return abstract, 0.0, False


def getTextPredictions(abstract:str, classify_model_vars:Tuple[Any,Any,Any,Any,Any]) -> Tuple[float,bool]:
    
    nlp, nlpSci, nlpSci2, classify_model, classify_tokenizer = classify_model_vars
    
    if len(abstract)>5:
        # remove stopwords
        for word in STOPWORDS:
            token = ' ' + word + ' '
            abstract = abstract.replace(token, ' ')
            abstract = abstract.replace(' ', ' ')

        # preprocess abstract
        abstract_standard = [standardizeAbstract(standardizeSciTerms(abstract, nlpSci, nlpSci2), nlp)]
        sequence = classify_tokenizer.texts_to_sequences(abstract_standard)
        padded = pad_sequences(sequence, maxlen=max_length, padding=padding_type, truncating=trunc_type)

        y_pred1 = classify_model.predict(padded) # generate prediction
        y_pred = np.argmax(y_pred1, axis=1) # get binary prediction

        prob = y_pred1[0][1]
        if y_pred == 1:
            isEpi = True
        else:
            isEpi = False

        return prob, isEpi
    
    else:
        return 0.0, False

if __name__ == '__main__':
    print('Loading 5 NLP models...')
    classify_model_vars= init_classify_model()
    print('All models loaded.')
    pmid = input('\nEnter PubMed PMID (or DONE): ')
    while pmid != 'DONE':
        abstract, prob, isEpi = getPredictions(pmid, classify_model_vars)
        print(abstract, prob, isEpi)
        pmid = input('\nEnter PubMed PMID (or DONE): ')